

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	C✓	(1)
1.2	B✓	(1)
1.3	D✓	(1)
1.4	D✓	(1)
1.5	A✓	(1)
1.6	C✓	(1)
1.7	D✓	(1)
1.8	D✓	(1)
1.9	B✓	(1)
1.10	D✓	(1)
1.11	D✓	(1)
1.12	C✓	(1)
1.13	B✓	(1)
1.14	B✓	(1)
1.15	A✓	(1)
1.16	C✓	(1)
1.17	A✓	(1)
1.18	C✓	(1)
1.19	D✓	(1)
1.20	B✓	(1) [20]

QUESTION 2: SAFETY

2.1 Safety – Centre lathe

- Look out for revolving work pieces ✓
- Do not remove shavings by hand ✓
- Be careful not to run the cutting tool into the chuck ✓
- Do not make any adjustments on the work piece while the machine is running ✓
- Do not leave tools on the machine while in operation \checkmark

2.2 Safety – Tensile Tester

- Use safety goggles ✓
- Do not apply excessive pressure ✓
- Test piece to be well secured for testing ✓
- Check hydraulic fluid level ✓

2.3 Safety – Spring Tester

- Spring tester should be in a good condition ✓
- Spring tester must be fitted correctly and firmly ✓
- Ensure that the spring cannot slip out of position before applying the load \checkmark
- An uniform load must be applied ✓
- Release the load carefully and uniformly ✓

2.4 Safety – Cylinder Leakage

•

- Clean the area around the spark plug, before removing the spark plug ✓
 ➤ To prevent dirt from falling into the cylinder. ✓
 - Be careful when removing radiator cap ✓
 - ➤ The water may be hot and under pressure. ✓
- Do not exceed the specified pressure to test the cylinder \checkmark
 - To prevent damage to the seals and tester.
- The tester must fit properly and be well tightened in the spark hole or injector hole \checkmark
 - > To prevent damage to the tester and spark hole or injector hole. \checkmark

Any 2 x 2

(2)

(Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

QUESTION 3: TOOLS AND EQUIPMENT

3.1 **Compression testing**

3.1.1	•	Wet compression test ✓		
	•	Dry compression test ✓		(2)
3.1.2	•	Worn cylinders 🗸		
	•	Worn piston rings ✓		
	•	Worn piston ✓		
	•	Leaking inlet valve ✓		
	•	Leaking exhaust valve ✓		
	•	Leaking cylinder head gasket ✓		
		3, 3	(Any 2 x 1)	(2)

3.2 Oil pump

• Oil pressure meter or oil pressure tester ✓

3.3 Cooling system test

- Remove the radiator cap and fit the tester \checkmark
- Pump air at the prescribed pressure into the system \checkmark
- Note the reading ✓ and if the reading drops, it indicates a leaking system ✓
- To test for a leaking cylinder-head gasket, ✓ the engine is started. ✓
- If the reading increases while the engine idles, it indicates on a leaking cylinder-head gasket ✓

(7) **[12]**

(1)

(Any 2 x 1)

(2)

(2)

QUESTION 4: MATERIALS

4.1 **Iron-carbon properties**

4.1.1 **Pearlite:**

- Good ductility ✓
- Hard ✓
- Strong and tough ✓
- Resistant to deformation ✓

4.1.2 **Cementite:**

- Intensely hard ✓
- Brittle. 🗸

4.2 **Critical points**

4.2.1 AC₁ lower critical point

- The lowest temperature to which steel must be heated to be hardened. $\checkmark\checkmark$
- The lowest temperature where the structure starts to change. ✓ ✓

(Any 1 x 2) (2)

4.2.2 **AC**₃ – high critical point

- The highest temperature to which the steel can be heated to obtain maximum hardness. $\checkmark\checkmark$
- The temperature where the steel completely loses its magnetic properties. ✓✓
- The temperature where the steel's structure is at its finest. $\checkmark\checkmark$

(Any 1 x 2) (2)

4.3 Carbon content determines the hardness of steel. ✓ (1) 4.4 Cementite structure in steel determines the hardness. ✓ (1)

- 4.5 Ferrite structure in steel determines the ductility. \checkmark
- 4.6 Austenite is a solid solution of iron and carbon also called iron carbide. ✓
 The structure is at its finest. ✓
 (2)

[13]

(1)

QUESTION 5: TERMINOLOGY

5.1 Gear calculation

5.1.1 5.1.2	Circular pitch=m×π module = $\frac{\text{circular pitch}}{\pi}$ = $\frac{12,567}{\pi}$ = 4 mm Outside diameter = PCD+2m	✓ ✓ ✓	(3)
	PCD=OD-2m =112-2(4) =104 mm	\checkmark	(3)
5.1.3	CuttingDepth=2,157m CuttingDepth=2,157 \times 4 OR =8,628mm = 8,63 mm	CuttingDepth =2,25m CuttingDepth = 2,25×4 =9 mm	✓ ✓ (2)
5.1.4	Addendum=m =4 mm	\checkmark	(1)
5.1.5	Dedendum=1,157m =1,157×4 OR =4,628mm =4,63 mm	Dedendum=1,25m Dedundum=1,25×4 =5 mm ✓	
5.1.6	Clearance = 0,157m = 0,157 \times 4 OR = 0,628 mm = 0,63 mm	Clearance=0,25m =0,25×4 =1 mm	(2)
5.1.7	$module = \frac{PCD}{Teeth}$ $Teeth = \frac{PCD}{Teeth}$	\checkmark	
	Teeth = $\frac{10D}{m}$ = $\frac{104}{4}$	✓	
	=26 teeth	\checkmark	(3)

5.2 Indexing

Indexing = $\frac{40}{r}$	
n	/
_40	v
$=\frac{1}{26}$	
40_2	
$=\frac{40}{26}\div\frac{2}{2}$	\checkmark
$=\frac{20}{13}$	
- 13	
$=1\frac{7}{13}\times\frac{3}{3}$	
13^3	
$=1\frac{21}{39}$	\checkmark
39	/
Indexing=1 full turn of the crank and 21 holes on the 39 hole circle	✓

(4)

5.3 Screw thread cutting

- Set up the work piece in the lathe and turn the part to be threaded to the major diameter of the thread. ✓
- Set the compound slide to the correct angle (30°) to the right and set the tool up accurately in the post. ✓
- Consult the index plate of the quick-change gearbox for 2 mm pitch and move the levers accordingly. ✓
- Start the lathe and set the cutting tool so that it just touches the work piece. Set graduated dials to zero (cross feed and compound slide) ✓
- Move cutting tool a short distance off end of work piece and feed compound slide say 0,06 mm inwards. ✓
- With lathe turning, engage half nuts at the correct line on the chasing dial, putting the first cut in progress. ✓
- Withdraw the cutting tool quickly and disengage the half-nut lever. Return the carriage to the starting point of the thread. ✓ **OR** Stop the machine, leave half nut engaged, back off slide past zero and return carriage to start position in reverse ✓
- Check with thread gauge to see if thread pitch is correct. ✓
- Repeat with successive cuts until thread is complete. (Remember to bring cross-feed collar back to zero for each cut) ✓
- Each successive cut is set by means of the compound slide. Check thread with ring gauge for correct fit. ✓

QUESTION 6: JOINING METHODS

6.1	MIG/MAGS welding equipment					
	6.1.1	MIG/MAGS welding equipment ✓		(1)		
	6.1.2	Labels A = Shielding gas cylinder \checkmark B = Regulator \checkmark C = Gas flow meter \checkmark D = Continuous wire reel \checkmark E = Welding gun \checkmark F = Arc \checkmark G = Earth clamp \checkmark		(7)		
	6.1.3	Purpose		()		
	0.1.0	Prevents oxygen \checkmark to come in contact with the molte	n metal.✓	(2)		
6.2	Weld de	efects				
	6.2.1	 Defect: Slag inclusion Causes: Included angle is too narrow. ✓ Rapid chilling. ✓ Weld temperature is too low. ✓ High viscosity of molten metal. ✓ Slag from previous run weld not removed. ✓ 	(Any 2 x 1)	(2)		
	6.2.2	 Defect: Undercutting Causes: Faulty electrode manipulation. ✓ Current too high. ✓ Arc length too long. ✓ Speed of weld too fast. ✓ 				
			(Any 2 x 1)	(2)		

6.3 Welding defects

6.3.1 **Defect: Lack of fusion Preventions**:

- Adjust the electrode angle and prepare the V groove properly.✓
- Weave must be sufficient to melt sides of the joint. ✓
- Proper current will allow fusion. ✓
- Adjust welding speed to ensure fusion. ✓

(Any 2 x 1) (2)

6.3.2 **Defect: Weld craters Preventions:**

- Use lower current. ✓
- Use proper welding technique. ✓
- Use correct electrode ✓

(Any 2 x 1) (2)

6.4 **Dye penetration test**

- Clean the weld that needs to be tested. \checkmark
- The dye is sprayed onto the clean surface. ✓
- Allow the dye to penetrate the weld joint. ✓
- Excess dye is cleaned away with a cleaning agent. ✓
- Allow surface to dry thoroughly. \checkmark
- Spray a developer onto the surface to bring out the dye trapped in the crack. ✓
- The dye will show all the surface defects ✓

(7) **[25]**

QUESTION 7: FORCES

7.1 Resultant 2,1 kΝ 1,5 kN 1,5cos40° ,5sin40° 50° 40° 90° 4,7kN 50° ĺ30° 3,1sin50° 3,1 kN 3,1cos50° I $7.1.1 \sum HC = 4,7 - 3,1cos50^{\circ} - 1,5cos40^{\circ}$ = 4,7 - 1,99 - 1,15 $\checkmark\checkmark\checkmark$ = 1,56 k N $7.1.2 \sum VC = 2,1+1,5sin40^{\circ} - 3,1sin50^{\circ}$ $\checkmark\checkmark\checkmark$ = 2,1+0,96-2,37= 0,69 kN

7.1.3 Horizontal components	Magnitudes	7.1.4 Vertical components	Magnitudes
4,7 kN	4,7 kN ✓	2,1 kN	2,1 kN ✓
3,1 kN Cos50°	-1,99 kN ✓	1,5 kN Sin40 ⁰	0,96 kN ✓
1,5 kN Cos40°	-1,15 kN ✓	3,1 kN Sin50°	-2,37 kN ✓
TOTAL	1,56 kN ✓	TOTAL	0,69 kN√

$$E^{2} = HC^{2} + VC^{2}$$

$$E = \sqrt{1,56^{2} + 0,69^{2}}$$

$$E = 1,71 \text{ kN}$$

$$Tan \Phi = \frac{VC}{HC}$$

$$= \frac{0,69}{1,56}$$

$$\Phi = 23,86^{0}$$

$$E = 1,71 \text{ kN at } 23,86^{0} \text{ north from east}$$

7.2 Stress and Strain

Forces

Force=load×gravity
=600×10
=6000N ✓
$$=\frac{1000}{4}$$
$$=\frac{1000}{4}$$
$$=\frac{1000}{4}$$
$$=2,011\times10^{-4} \text{ m}^2 \text{ fm}^2$$

Stress =
$$\frac{\text{Force}}{\text{Area}}$$

= $\frac{6000}{2,011 \times 10^{-4}}$
= 29841551,83 Pa
= 29,84 MPa \checkmark

7.3 One Pascal (1 Pa) is equal to one Newton force (1 N) \checkmark acting onto \checkmark an area of one square metre (1 m²) \checkmark (3)

(15)

(6)

Nee me

7.4 **Reactions**

Taking moments around A

$$= \implies$$

$$(B \times 3,5) + (1400 \times 0,7) = (350 \times 6,7)2,65 + (1600 \times 6)$$

$$3,5B + 980 = 6214,25 + 9600$$

$$\frac{3,5B}{3,5} = \frac{6214,25 + 9600 - 980}{3,5}$$

$$= 4238,36 \text{ N}$$

Taking moments around B

$$\Rightarrow$$
 = \Leftrightarrow
 $(A \times 3,5) + (1600 \times 2,5) = (350 \times 6,7)0,85 + (1400 \times 4,2)$ \checkmark
 $3,5A + 4000 = 1993,25 + 5880$ \checkmark
 $\frac{3,5A}{3,5} = \frac{1993,25 + 5880 - 4000}{3,5}$ \checkmark
 $A = 1106,64$ N

(6) **[30]**

QUESTION 8: MAINTENANCE

8.1 **Routine maintenance**.

- Tear on the belt.✓
- Misalignment of belt drive. ✓
- Overheating of components. ✓
- Belt slip. ✓
- Belt wear. ✓
- Pulley wear. ✓
- Financial loss due to the damage suffered.√
- Loss of valuable production time. ✓

(Any 2 x 1) (2)

(2)

(2)

(5) **[15]**

(Any 2 x 1)

8.2 Cutting fluid

- To allow it to flow easily ✓
- Dissipate excess heat ✓
- Prevent excessive load on pump ✓

8.3 Flash point

Is the lowest temperature at which the oil gives off a vapour which will ignite. $\checkmark \checkmark$ (2)

8.4 **'API'**

American Petroleum Institute VV

8.5 Automatic transmission fluid

- Transmit power in the torque convertor \checkmark
- Let hydraulic fluid transmit energy in order to move various parts such as the servo unit. \checkmark
- Acts as heat transfer medium to transfer heat within the transmission to outside and assist in cooling it down. ✓
- Acts as a lubricant for gears and bearings. \checkmark

(**Any 2 x 1**) (2)

8.6 **Replace belt in a drill press**

- Machine should be switched off the locked out. \checkmark
- Tension on the belt to be released by loosening an adjusting screw or releasing the belt tensioner. \checkmark
- Remove the belt. ✓
- Replace with new belt of the correct type and size. ✓
- The belt should be re-tensioned and aligned. ✓

QUESTION 9: SYSTEMS AND CONTROL

9.1 Gear drive

9.1.1 **Rotational frequency of the electric motor:**

$\frac{N_{A}}{N_{D}} = \frac{T_{B} \times T_{D}}{T_{A} \times T_{C}}$	\checkmark	
$N_{\rm A} = \frac{80 \times 63 \times 2}{30 \times 40}$	\checkmark	
$N_A = \frac{10080}{1200}$	\checkmark	
$N_{\rm A} = 8,4 {\rm r/s}$	\checkmark	(5)

9.1.2 **Speed ratio of gear train:**

Speed ratio = Input Output			Speed ratio= Driver teeth		
Output			Driver teeth		
$=\frac{8,4}{2}$	✓	OR	$=\frac{80}{30}\times\frac{63}{40}$	√ √	
= 4,2:1	\checkmark		= 4,2:1	v	(2)

9.2 Belt drive

9.2.1 Diameter of the driven pulley

$$N_{1} \times D_{1} = N_{2} \times D_{2}$$

$$N_{1} = \frac{N_{2} \times D_{2}}{D_{1}} \qquad \checkmark$$

$$= \frac{7.2 \times 600}{800} \qquad \checkmark$$

$$= 5.4 \text{ r/s} \qquad \checkmark$$

Copyright reserved

(3)

9.2.2 **Power transmitted:**

$P=(T_1-T_2) \models$		$\frac{T_1}{T_2} = 2,5$	
P ₹ 300 –120) ⊨×0,6×7,2	\checkmark	300	\checkmark
=2442,90 Watt	/	$T_2 = \frac{300}{2,5}$	
=2,44 kW	v	=120 N	

OR

$P = (T_1 - T_2) \models$		$\frac{T_1}{T_2} = 2,5$	
P ≠ 300 –120) ⊨×0,8×5,4	\checkmark	$T_2 = \frac{300}{2,5}$	
=2442,90 Watt =2,44 kW	\checkmark	² 2,5 =120N ✓	(3)

9.3 The volume of gas can be changed by the altering of ...

- its pressure ✓
- its temperature ✓
- both its pressure and temperature ✓

(**Any 2 x 1**) (2)

9.4 **Definition of Boyle's law**

The volume of a given mass \checkmark of gas is inversely proportional to the pressure \checkmark on it, if the temperature remains constant \checkmark (3)

✓

 \checkmark

√

✓

1

✓

 \checkmark

9.5 Hydraulics

9.5.1 Fluid pressure

$$A_{A} = \frac{E_{A}^{2}}{4}$$
$$= \frac{E_{A}^{2}}{0.04}$$
$$= 1,26 \times 10^{-3} \text{ m}^{2}$$

$$P_{A} = \frac{F}{A_{A}}$$

= $\frac{80}{1,26 \times 10^{-3}}$ Pa
= 63661,98 Pa
= 63,66 kPa

9.5.2 Diameter of piston B

$$P_{B} = P_{A}$$

$$P_{B} = \frac{F_{B}}{A_{B}}$$

$$A_{B} = \frac{F_{B}}{P_{B}}$$

$$A_{B} = \frac{320}{63492,06}$$

$$A_{B} = 5,04 \times 10^{-3}$$

$$A = \frac{E^{2}}{4}$$

$$D_{B} = \sqrt{\frac{A_{B} \times 4}{E}}$$

$$= \sqrt{\frac{5,04 \times 10^{-3} \times 4}{E}}$$

$$= 0,08 \text{ m}$$

$$= 80 \text{ mm}$$

(3)

(4) **[25]**

QUESTION 10: TURBINES

10.1	Water turbine blades To supply water pressure \checkmark to the turbine \checkmark	(2)
10.2	 Reverse flow Deriaz √ Francis √ 	(2)
10.3	 Supercharger Roots√ Twin screw√ Centrifugal √ Vane √ (Any 2 x 1) 	(2)
10.4	 Turbocharger Exhaust gases drive the turbine ✓ The turbine drives a compressor via a common shaft✓ The compressor forces ✓ compressed air above atmospheric pressure into the cylinder ✓ Exhaust gases leave system through the exhaust pipe ✓ 	(5)
10.5	 Supercharger over turbocharger Do not suffer lag ✓ More efficient at low revolution per minute. ✓ Does not require extensive exhaust modification.✓ No special shutdown procedure is required. ✓ (Any 2 x 1)	(2)
10.6	Lag Lag is the delay \checkmark between pressing the accelerator pedal \checkmark and feeling the pressure building up. \checkmark	(3)
10.7	 Supercharger drive Belt drive ✓ Gear drive ✓ Chain drive ✓ 	

(Any 2 x 1) (2)

10.8 **Gas turbine disadvantages**

- Cost is much greater than for a similar-sized reciprocating engine since the materials must be stronger and more heat resistant. ✓
- Manufacturing operations are also more complex. ✓
- Usually less efficient than reciprocating engines, especially at idling speed. \checkmark
- Delayed response to changes in power settings. ✓

(Any 2 x 1) (2)

[20]

TOTAL: 200