

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	B✓	(1)
1.2	D✓	(1)
1.3	C✓	(1)
1.4	D✓	(1)
1.5	A✓	(1)
1.6	B✓	(1)
1.7	C✓	(1)
1.8	B✓	(1)
1.9	A✓	(1)
1.10	D✓	(1)
1.11	C✓	(1)
1.12	B√	(1)
1.13	B✓	(1)
1.14	D√	(1)
1.15	A✓	(1)
1.16	B✓	(1)
1.17	D✓	(1)
1.18	D✓	(1)
1.19	B√	(1)
1.20	C√	(1) [20]

QUESTION 2: SAFETY

2.1	• Ma • Do	e Grinder: ke sure the sparks are of no danger to co-workers. ✓ not force the grinding wheel onto the material. ✓ ng the grinding wheel slowly into contact with the material. ✓	(3)	
2.2	• To	re Gauge: make sure there is no leakages. ✓ make sure that the readings are accurate. ✓	(2)	
2.3	Spot W To preve	elding: ent the tips from overheating during operation. \checkmark	(1)	
2.4	Cylinde	Cylinder Leakage test::		
	2.4.1	Stroke: The beginning of compression stroke ✓	(1)	
	2.4.2	Piston: Bottom dead centre ✓	(1)	
	2.4.3	Valves: Both valves are closed ✓	(1)	
2.5	Bearing Perpend	J Puller: dicular/90° to the bearing. ✓	(1) [10]	

QUESTION 3: TOOLS AND EQUIPMENT

3.1 Volt and ammeter:

- Voltmeter: connected in parallel to a circuit. ✓ •
- Ammeter: connected in series to a circuit. ✓ •

OR

3.3

3.4

Credit should be given to the learner for the drawing illustrating the • correct answer. (2)

Beam bending and cylinder leakage tests: 3.2

3.2.1	A beam bending test is to investigate the deflection \checkmark of beams. \checkmark	(2)
3.2.2	A cylinder leakage tester is to check whether gasses leak \checkmark from the cylinders. \checkmark	(2)
	r ession Test: Igs are worn out. ✓✓	(2)
A – Sp B – Pre C – Pre	ression tester: ark plug adaptor ✓ essure gauge ✓ essure release valve ✓ ibber pipe ✓	(4) [12]

4

QUESTION 4: MATERIALS

4.1	Propert	Properties of structures:				
	4.1.1	 Soft ✓ Ductile ✓ Grey or white in colour ✓ (Any 2x1) 	(2)			
	4.1.2	 Ductile ✓ Hard ✓ Strong and tough ✓ Resistant to deformation ✓ 				
		(Any 2x1)	(2)			
4.2	Cement	tite ✓✓	(2)			
4.3	Classes	Classes of steel				
	4.3.1	Bolts, nuts, screws and rivets ✓ (Any 1x1)	(1)			
	4.3.2	Surface hardening (case hardened), hardening and tempering \checkmark (Any 1x1)	(1)			
	4.3.3	Brittle, poor weldability ✓ (Any 1x1)	(1)			
4.4	Definition:					
	 4.4.1 Lower Critical point (AC₁): This is the lowest temperature to which steel must be heated to be hardened. ✓✓ 		(2)			
	4.4.2	Critical temperature: It is the temperature where a structural change takes place. $\checkmark \checkmark$	(2) [13]			

QUESTION 5: TERMINOLOGY

5.1 V-Screw thread cutting :

- Set up the work-piece in the lathe and turn the part to be threaded to the major diameter of the thread. ✓
- Set the compound slide 30° to the right and set the tool up accurately in the post ✓
- Set the quick-change gearbox for 1,5 mm pitch ✓
- Start the lathe and set the cutting tool so that it just touches the workpiece. Set graduated dials to zero (cross feed and compound slide) ✓
- Move cutting tool a short distance off end of work-piece and feed compound slide say 0,06 mm inwards. ✓
- With lathe turning, engage half nuts at the correct line on the chasing dial, putting the first cut in progress ✓
- Withdraw the cutting tool quickly at the end of the cut and disengage the half-nut lever. Return the carriage to the starting point of the thread. ✓
- Stop the centre lathe and check with thread gauge to see if thread pitch is correct. ✓
- Repeat with successive cuts until thread is complete. (Remember to bring cross-feed collar back to zero for each cut). ✓
- Each successive cut is set by means of the compound slide. ✓
- Check thread with ring gauge for correct fit. ✓

5.2 **Cutting depth:**

Cutting depth = 0,866 x P	\checkmark	
$= 0,866 \times 2,5$	\checkmark	
= 2,17 mm	\checkmark	(3)

5.3 Indexing:

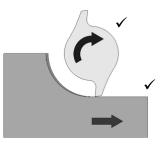
Indexing = $\frac{40}{n}$	\checkmark	
_ 40		
$=\frac{1}{82}$		
$=\frac{20}{41}$	\checkmark	
No full turns. 20 holes on a 41 hole circle	\checkmark	(3)

(11)

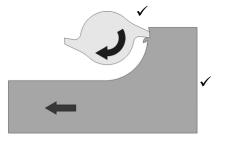
(3)

(3)

(3)


5.4 **Key calculations:**

5.4.1	Key length: Length = 1.5×Diameter	\checkmark	
	Diameter $=\frac{L}{1.5}$		
	Diameter $=\frac{102}{1.5}$	v	
	Diameter = 68 mm	\checkmark	
5.4.2	Key width: Width $=\frac{D}{4}$	\checkmark	
	$=\frac{4}{68}$	\checkmark	
	Width =17 mm	\checkmark	
5.4.3	Key thickness: Thickness = $\frac{D}{2}$	✓	


Ney unickness.	
Thickness $=\frac{D}{6}$	\checkmark
_68	\checkmark
6	
Thickness =11.33mm	\checkmark

5.5 **Milling operations:**

Up-cut milling:

Down-cut milling:

(2) **[30]**

(2)

QUESTION 6: JOINING METHODS

6.1 Welding Machine:

6.1.1	MIGS/MAGS welding machine \checkmark	(1)
6.1.2	 A. Welding pistol/gun ✓ B. Switch ✓ C. Regulator or Gas flow meter ✓ D. Gas cylinder ✓ E. MIGS/MAGS welding machine ✓ F. Earth cable ✓ 	

G. Welding pistol conduit/welding hose \checkmark (7)

6.2 **Operating principles of an X-ray testing equipment:**

- The X-ray source is placed in front of the object being tested. ✓
- The source is activated for a brief moment and the X-rays penetrate the test piece. ✓
- As the X-rays pass through areas of lower density, it will be exposed lighter on the film, which indicates the welding defects. $\checkmark\checkmark$
- A photographic film with details of defects is provided, which can be studied. ✓✓

6.3 Advantages of metal-arc shielded welding (MIGS/MAGS):

- Can weld in any position ✓
- Less operator skills are required ✓
- Long welds can be made without stops and starts ✓
- Minimal post welding cleaning is required ✓

6.4 Bend test:

• To measure ductility of the weld deposit and the heat affected area adjacent to the weld. $\checkmark\checkmark$

6.5 **Welding defects:**

6.5.1 **Incomplete penetration:**

- Welding speed too high \checkmark
- Joint design faulty ✓
- Arc is to long ✓
- Current too low ✓

6.5.2 Welding craters:

- Current too high ✓
- Incorrect welding technique ✓
- Electrode too thin ✓

(Any 2x1) (2)

(6)

(3)

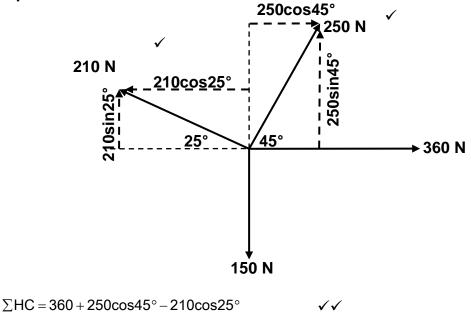
(2)

(2)

(Any 2x1)

(Any 3x1)

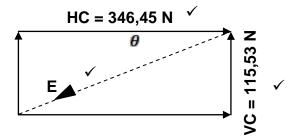
6.6 Welding techniques:


- Rate of electrode burning and progress of the weld \checkmark •
- The angle of the electrode \checkmark •
- The distance between the parent metal and the electrode. • (Arc length) ✓

(Any 2x1) (2)

[25]

QUESTION 7: FORCES


7.1 Equilibrant:

 $\sum VC = 250 sin 45^{\circ} + 210 sin 25^{\circ} - 150$ = 115,53N

OR

HORIZONTAL COMPONENT	MAGNITUDES	VERTICAL COMPONENT	MAGNITUDES
-210 cos25 [°] ✓	-190,32N	210 sin25 ° ✓	88,75 N
250 cos45 [°] ✓	176,78N	250 sin45 ° ✓	176,78 N
360	360 N	-150	-150 N
TOTAL	346,45 N ✓	TOTAL	115,53 N√

$$E^{2} = HC^{2} + VC^{2}$$

$$E = \sqrt{346,45^{2} + 115,53^{2}}$$

$$E = 365,21 \text{ N}$$

$$Tan = \frac{VC}{HC}$$

$$= \frac{115,53}{346,45}$$

$$= 18,44^{0}$$

$$E = 365,21 \text{ N at } 18,44^{0} \text{ south from west}$$

$$(15)$$

7.2 **Stress and Strain:**

Stress:

$$A = L^{2}$$

$$A = 0,1^{2}$$

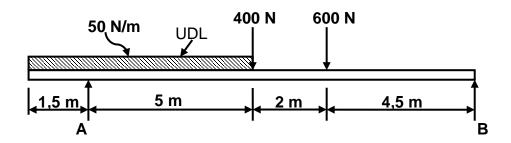
$$A = 0,01 \text{ m}^{2}$$

$$= \frac{F}{A}$$

$$= \frac{80 \times 10^{3}}{0,01}$$

$$= 8 \times 10^{6} \text{ Pa}$$

$$= 8 \text{ MPa}$$


Strain is directly proportional \checkmark to the stress \checkmark that causes it, provided the limit of elasticity is not exceeded \checkmark . 7.3

Copyright reserved

(5)

(3)

7.4 Moments:

Calculate A Take moments about 'B' $A \times 11,5 = (600 \times 4,5) + (400 \times 6,5) + (325 \times 9,75)$ = 2700 + 2600 + 3168,75 $= 8468,75 \ N$ $A = \frac{8468,75}{11,5}$ $A = 736,41 \ N$

Calculate B

Take moments about "A" $B \times 11,5 = (325 \times 1,75) + (400 \times 5) + (600 \times 7)$ = 568,75 + 2000 + 4200 = 6768,75 N $B = \frac{6768,75}{11,5}$ B = 588,59 N

(7) **[30]**

QUESTION 8: MAINTENANCE

8.1 Advantages of cutting fluid:

- The workpiece and cutting tool are kept cool. ✓
- The life of the cutting tool is prolonged. ✓
- A better finish is imparted to the workpiece. ✓
- Cuttings are washed away. ✓
- The worker is protected from very fine metal chips and dust. ✓
- It prevents corrosion. ✓
- Productivity is increased because the cutting process is faster. ✓

(Any 2x1) (2)

8.2 Preventive maintenance is maintenance of equipment and systems before faults occur. \checkmark (1)

8.3 Chain drive:

8.3.1 Chain drive preferable to belt drive:

- It is much stronger ✓
- It has a much longer service life ✓
- It provides positive drive. (No slip) ✓

8.3.2 **Stretched chain:**

- The chain loses its strength/tension. \checkmark
- It generates more friction. ✓
- It causes the chain to vibrate. ✓
- It causes excessive noise. ✓
- The chain can break. ✓
- The chain can easily slip from its sprocket. ✓
- (Any 2x1) (2)

(Any 2x1)

8.3.2 **Chain Replacement:**

- Align crankshaft and camshaft pulleys before removing the timing chain.
- Disconnect the link plate. ✓
- Remove the chain from the sprockets. ✓
- Select the correct length and size replacement chain. ✓
- Fit the new chain. ✓
- Insert the link plate and tension the chain. \checkmark (6)
- 8.4 Engine oil must have a high flash point to prevent the vapour to ignite. $\checkmark \checkmark$ (2)

[15]

(2)

QUESTION 9: SYSTEM AND CONTROLS

9.1 Gear drives:

9.1.1 Number of teeth on idler gear:

9.1.2 **Rotation frequency of the driven gear:**

$$N_{c} \times T_{c} = N_{A} \times T_{A}$$

$$N_{c} = \frac{N_{A} \times T_{A}}{T_{c}}$$

$$N_{c} = \frac{660 \times 50}{60}$$

$$N_{c} = \frac{550 \text{ rpm}}{60}$$

$$N_{c} = 9,17 \text{ r/s}$$

9.2 Belt Drives:

9.2.1 **Rotation frequency of the driven pulley:**

$$N_{DN} \times (D_{DN} + t) = N_{DR} \times (D_{DR} + t) \quad \checkmark$$

$$N_{DN} = \frac{N_{DR} \times (D_{DR} + t)}{(D_{DN} + t)} \quad \checkmark$$

$$N_{DN} = \frac{1640 \times (175 + 12)}{(80 + 12)} \quad \checkmark$$

$$N_{DN} = \frac{3333,48 \text{ rpm}}{60} \quad \checkmark$$

$$N_{DN} = 55,56 \text{ r/s} \quad \checkmark$$
(3)

9.2.2 Belt speed:

$$v = \frac{F(D+t)N}{60} \qquad \checkmark v = \frac{F(0,175+0,012) \times 1640}{60} \qquad \checkmark v = 16,06 \text{ m/s} \qquad \checkmark$$

(3)

(3)

9.3 **Hydraulics**:

9.3.1 Fluid pressure:

$$A_{A} = \frac{E_{A}^{2}}{4}$$

$$A_{A} = \frac{E(0,038)^{2}}{4}$$

$$A_{A} = 1,13 \times 10^{-3}$$

$$p = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$p = \frac{240}{1,13 \times 10^{-3}}$$

$$p = 211618,76 \text{ Pa} \qquad \checkmark \qquad (3)$$

9.3.2 Force exerted by piston B:

$$A_{B} = \frac{\pi D^{2}}{4} \qquad \checkmark$$

$$A_{B} = \frac{\pi (0, 15)^{2}}{4}$$

$$A_{B} = 0,017671458 \ m^{2} \qquad \checkmark$$

$$P = \frac{F_B}{A_B} \qquad \checkmark$$

$$F_B = P \times A$$

$$F_B = (211618, 76) \times (0,017671458)$$

$$F_B = 3739, 61 \ N \qquad \checkmark \qquad (4)$$

9.4 **Purpose of vehicle engine management system:**

The vehicle engine management system controls the...

- Engine fuel system ✓
- Ignition system ✓
- Exhaust emission ✓
- Cooling system ✓
- Battery charging system ✓

(Any 4x1) (4)

9.5 **Purpose of anti-lock brake system:**

ABS relieves hydraulic pressure on wheels which are about to skid. \checkmark This action reduces the braking effort that would have caused a skid. \checkmark OR

The purpose is to provide safer vehicle handling \checkmark under difficult conditions. \checkmark

(2) [**25**]

(Any 2x1)

(Any 3x1)

(2)

(2)

(3)

(2)

QUESTION 10: TURBINES

10.1 Water turbine:

- Water turbines do not emit carbon. ✓
- No water is destroyed in the process of creating electricity. ✓
- Water turbines are more reliable. ✓
- Water turbines continue to turn on cloudy and windless days unlike solar and wind operated generators. ✓
- Environmental friendly and no pollution. ✓

10.2 Water turbine definitions:

10.2.1	Specific speed of a water turbine is the speed at which the turbine turns for a particular discharge with the unit head, and thereby is able to produce unit power. $\checkmark \checkmark$	(2)
10.2.2	Free load/runaway speed of a water turbine is its speed at full flow and with no shaft load. $\checkmark\checkmark$	(2)

10.3 A steam turbine is a mechanical device that extracts thermal energy from pressurised steam and converts it into useful mechanical work.✓✓

10.4 **Classification of steam turbine:**

- Condensing turbines ✓
- Non-condensing turbines ✓
- Reheat turbines ✓
- Extraction turbines ✓
- Induction turbines ✓

10.5 **Gas turbine for naval vessels:**

It is valued for their high power to weight ratio which has quick acceleration as result. $\checkmark\checkmark$

10.6 **Turbo boost:**

Turbo boost refers to the increase in manifold pressure that is generated by turbocharger in the intake path or specifically intake manifold that exceeds atmospheric pressure $\checkmark \checkmark$

(2)

10.7 **Operation of twin-screw supercharger:**

- A twin screw supercharger operates by pulling air through a pair of meshing lobes that resemble set of worm gears.✓
- The air inside a twin screw supercharger is trapped in pockets created by the rotor blades.
- A twin screw supercharger compresses the air inside rotor housing.
- Reason is the rotors have a conical taper which means the air pockets decrease in size as air moves from the fill side to the discharge side.✓
- As the air pockets shrink, the air is squeezed into a smaller space and increases the pressure. ✓

(5) **[20]**

GRAND TOTAL: 200