EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (PHYSICS)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{m} \cdot \text{s}^{-1}$
Universal gravitational constant	Ð	$6.7 \times 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb's constant	k	$9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Magnitude of charge on electron	е	1,6 × 10 ⁻¹⁹ C
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Planck's constant	h	6,6 × 10 ^{−34} J·s
1 electron volt	eV	$1,6 \times 10^{-19} \mathrm{J}$

TABLE 2 PHYSICS FORMULAE

MOTION

$V = U + at$ or $V_f = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t \text{ or } \Delta x = \left(\frac{v_t + v_i}{2}\right)\Delta t$		
$v^2 = u^2 + 2as$ or $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2$ or $\Delta x = v_i \Delta t + \frac{1}{2}a(\Delta t)^2$		

FORCE AND MOMENTUM

F _{net} = ma	$F_{net} = rac{\Delta p}{\Delta t}$ or $F_{net} \Delta t = m \Delta v$	$\Delta p = mv - mu$ \mathbf{or} $\Delta p = mv_f - mv_i$
p = mv	$w = F_g = mg$	$F_f^{max} = \mu F_N$

WORK, ENERGY AND POWER

W = Fs or $W = For W = F\Delta x \cos \theta$		$P = \frac{W}{t}$		P = Fv	
$E_p = mgh$	Е	$\overline{c}_k = \frac{1}{2} m v^2$	$W_{net} = \Delta E$	K	$efficiency = \frac{power_{out}}{power_{in}}$

GRAVITATIONAL AND ELECTRIC FIELDS

$F = G \frac{m_1 m_2}{r^2}$		$g = G\frac{M}{r^2}$	
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$	

IEB Copyright © 2019 PLEASE TURN OVER

ELECTRIC CIRCUITS

$I = \frac{Q}{t}$	$V = \frac{W}{q}$
$R = \frac{V}{I}$	$emf = I(R_{ext} + r)$
$R_{\rm S} = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$P = \frac{W}{t}$ or	W = Pt
W = VIt or $W =$	$I^2Rt \qquad \text{or} \qquad W = \frac{V^2}{R}t$

ELECTRODYNAMICS

or $P = I^2 R$

P = -

or

P = VI

$\Phi = BA\cos\theta$	$emf = -\frac{N\Delta\Phi}{\Deltat}$
$V_{\rho}I_{\rho}=V_{s}I_{s}$	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

PHOTONS AND ELECTRONS

$c = f \lambda$		E = h	f or	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(max)}$	W ₀ =		$E_{\kappa(r)}$	$_{max)} = \frac{1}{2} m V_{max}^2$