EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (PHYSICS)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Speed of light in a vacuum	С	$3,0 \times 10^8 \mathrm{m \cdot s^{-1}}$
Universal gravitational constant	G	$6,7 \times 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb's constant	k	$9,0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	$9,1 imes 10^{-31} \mathrm{kg}$
Planck's constant	h	$6,6 \times 10^{-34} \text{J} \cdot \text{s}$
1 electron volt	eV	$1,6 \times 10^{-19} \mathrm{J}$

TABLE 2 PHYSICS FORMULAE

MOTION

$v = u + at$ or $v_i = v_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t$ or $\Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$
$v^2 = u^2 + 2as$ or $v_i^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2$ or $\Delta x = V_i \Delta t + \frac{1}{2}a(\Delta t)^2$

FORCE AND MOMENTUM

F _{net} = ma	$F_{net} = \frac{\Delta p}{\Delta t}$ or $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ or $J = \Delta p = mv_f - mv_i$
p = mv	$F_g = mg$	$F_{fs}^{\max} = \mu_s F_N$ $F_{fk} = \mu_k F_N$

WORK, ENERGY AND POWER

	$W = Fs \text{ or } W = F\Delta x$ or $W = F\Delta x \cos \theta$ $P = \frac{W}{t}$		$P = \frac{W}{t}$	P = Fv
$E_{p} = mgh$	$E_k =$	$\frac{1}{2}mv^2$	$W_{net} = \Delta E_{\kappa}$	efficiency = $\frac{power_{out}}{power_{in}} \times 100$

Page ii of ii

GRAVITATIONAL AND ELECTRIC FIELDS

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G \frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$

ELECTRIC CIRCUITS

$I = \frac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emf = I(R_{ext} + r)$ or $emf = V_{load} + V_{internal resistance}$		
$R_{\rm S} = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
$P = \frac{W}{t}$ or $W = Pt$			
W = VIt or $W =$	$V^2 Rt$ or $W = \frac{V^2}{R}t$		
P = VI or $P =$	$= l^2 R \text{or} P = \frac{V^2}{R}$		

ELECTRODYNAMICS

$\Phi = BA\cos\theta$	$emf = -\frac{N\Delta\Phi}{\Delta t}$		$F = IB\ell\sin\theta$
$V_{\rho}I_{\rho}=V_{s}I_{s}$			$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

PHOTONS AND ELECTRONS

$c = f \lambda$		E = h	f or	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{\kappa(\max)}$	<i>W</i> ₀ =	$= hf_0$	$E_{\kappa(m)}$	$m_{max} = \frac{1}{2}mv_{max}^2$