PHYSICAL SCIENCES: PAPER I

MARKING GUIDELINES

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

QUESTION 1

1.1 C
1.2 C
1.3 A
1.4 B
1.5 C
1.6 C
1.7 D
1.8 B
1.9 D
1.10 C

QUESTION 2

2.1.1 a = slope of v-t graph OR $\frac{\Delta v}{\Delta t}$

$$
\text { OR } \quad v=u+a t
$$

a $=\frac{0-4}{35-20}$
$0=4+\mathrm{a}(15)$
a $=-0,27$
$a=-0,27$
$\mathrm{a}=0,27 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ West
$\mathbf{a}=0,27 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ West
2.1.2 $\quad \mathbf{0 - 1 0} \mathbf{s}$ (A-B) and 40-50 s (E-F)
2.1.3 displacement is a change in position
2.1.4 s = area under v-t graph
$\mathrm{s}=\frac{1}{2}(10)(4)+(10)(4)+\frac{1}{2}(15)(4)-\frac{1}{2}(10)(3)$
s $=75 \mathrm{~m}$ East
2.1.5 No, it will not always be true. Displacement and distance can be equal only if the object travels in a straight line in one direction.
2.1 .6

2.2.1 average speed $=\frac{\text { total distance }}{\text { total time }}$
average speed $=\frac{12000}{7,6 \times 60}$
average speed $=26,32 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
2.2.2 $100 \mathrm{~km} / \mathrm{h}=27,78 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
2.2.3 No or yes if answer for $2.2 .1>2.2 .2$ (coe)
2.2.4 time for $1^{\text {st }} 6 \mathrm{~km}=\frac{6}{60}=0,1 \mathrm{hrs}$
time for $2^{\text {nd }} 6 \mathrm{~km}=\frac{6}{140}=0,04 \mathrm{hrs}$
average speed $=\frac{\text { total distance }}{\text { total time }}$
average speed $=\frac{12}{0,1+0,04}$
average speed $=84 \mathrm{~km} / \mathrm{h}($ or $85,71 \mathrm{~km} / \mathrm{h}$ if time rounded off $)$

QUESTION 3

3.1 velocity is rate of displacement OR velocity is the rate of change of displacement OR velocity is rate of change of position
3.2
$v^{2}=u^{2}+2 a s$
OR
$\left(E_{p}+E_{k}\right)_{\text {top }}=\left(\mathrm{E}_{\mathrm{p}}+\mathrm{E}_{\mathrm{k}}\right)_{\text {bottom }}$
$v^{2}=0+2(9,8)(95)$
$m g h+0=0+\frac{1}{2} m v^{2}$
$v^{2}=1862$
$(9,8)(95)=\frac{1}{2} v^{2}$
$v=43,15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\boldsymbol{v}=43,15 \mathrm{~m} \cdot \mathrm{~s}^{\mathbf{- 1}}$
3.3 acceleration is the rate of change of velocity
3.4 down positive
$v^{2}=u^{2}+2 a s$
up positive
$0=1862+2 \mathrm{a}(5,8)$
$v^{2}=u^{2}+2 a s$
$a=-160,52$
OR $\quad 0=1862+2 \mathrm{a}(-5,8)$
$\mathrm{a}=160,52 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ up
$\mathrm{a}=160,52$
($a=160,51 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ up if rounded)
3.5

$$
F_{u p}>F_{\text {down }}
$$

(-1 for extra forces)
3.6 $\quad F_{n e t}=m a$
$F_{b a g}-F_{g}=\mathrm{ma}$
$F_{b a g}-(80)(9,8)=(80)(160,52)$ coe
$F_{\text {bag }}=13$ 625,60 N (or 13 625,38 N if no rounding)
OR
$\overrightarrow{F_{b a g}}+\overrightarrow{F_{g}}=m \vec{a}$
$F_{\text {bag }}+(80)(9,8)=(80)(-160,52)$ coe
or $F_{\text {bag }}+(80)(-9,8)=(80)(160,52)$ coe
$F_{\text {bag }}=(-) 13 \mathbf{6 2 5 , 6 0} \mathbf{N}$ (or $13625,38 \mathrm{~N}$ if no rounding)
OR
$W_{\text {net }}=\Delta E_{K}=F_{\text {net }}(5,8)$ (for both equations)
$0-\frac{1}{2}(80)(43,15)^{2}=F_{\text {net }}(5,8)$
$F_{n e t}=(-) 12840,84 \mathrm{~N}$
$F_{\text {net }}=F_{\text {bag }}-F_{g}$
$F_{b a g}=12840+(80)(9,8)$
$F_{b a g}=13624,84 \mathrm{~N}$

OR
$v=u+a t$
$0=43,15+(-160,52) \mathrm{t}$
$t=0,27 \mathrm{~s}$
$F_{n e t} t=m \Delta v$ (for both equations)
$F_{\text {net }}(0,27)=80(0-43,15)$
$F_{\text {net }}=-12785,19 \mathrm{~N}$
$F_{\text {net }}=F_{\text {bag }}-F_{g}$
$F_{\text {bag }}=12785,19+(80)(9,8)$
$F_{b a g}=13569,19 \mathrm{~N}$
OR
$F_{b a g} s=\Delta E_{K}+\Delta E_{P}$
$F_{\text {bag }}(5,8)=\left(0-\frac{1}{2}(80)(43,15)^{2}\right)+(0-(80)(9,8)(5,8))$
$F_{\text {bag }}=(-) 13624,84 \mathrm{~N}$
3.7 $\quad F_{n e t} \Delta t=\Delta p$

Airbag increased time to stop
$F_{n e t}$ decreased
OR
$a=\frac{\Delta v}{\Delta t}$ and $F=m a$
Airbag increased time to stop
Acceleration decreased so $F_{n e t}$ decreased

QUESTION 4

4.1 Newton's first law states an object continues in a state of rest or uniform velocity unless it is acted upon by a net or resultant force.
4.2 Firing engine provides a resultant force on rocket as firing engine pushes gas out of exhaust and gas pushes back on rocket by Newton III

OR
Firing engine provides a resultant force on rocket
By Newton II
Rocket accelerates
4.3 The (total linear momentum) of an isolated system / in the absence of external forces remains constant (is conserved)
$4.4 \quad\left(p_{\text {total }}\right)_{\text {before }}=\left(p_{\text {total }}\right)_{\text {after }}$
$m(1000)=\frac{2}{3} m v+\frac{1}{3} m(-500)$
$v=1750 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

QUESTION 5

5.1 Kinetic energy is the energy an object has as a result of the object's motion.
$5.2 \quad E_{K}=\frac{1}{2} m v^{2}$
$E_{K}=\frac{1}{2}(10)(12)^{2}$
$E_{K}=720 \mathrm{~J}$
5.3 The work done by a net force /net work done on an object is equal to the change in the kinetic energy of the object.
5.4 $\quad F_{f} s=\Delta E_{k}$
$(-54,9)(6)=\frac{1}{2}(10) v^{2}-720$ coe
$-329,4=\frac{1}{2}(10) v^{2}-720$
$v=8,84 \mathrm{~m} \cdot \mathrm{~s}^{\mathbf{- 1}}$
OR
$F_{f} s=\Delta E_{k}$
$(54,9)(6)(\cos 180)=\frac{1}{2}(10) v^{2}-720$ coe
$-329,4=\frac{1}{2}(10) v^{2}-720$
$v=8,84 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
OR
$\left(F=m a \quad\right.$ and $\left.\quad v^{2}=u^{2}+2 a s\right)$
$-54,9=10 a \quad v^{2}=12^{2}+2(-5,49)(6)$ coe
$a=-5,49 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
$v=8,84 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
5.5 $\quad E_{P}=m g x \sin (35)$

OR
$E_{P}=m g x \sin (\theta)$
OR
$E_{P}=98 x \sin (35)$
OR
$E_{P}=56,21 x$
$5.6 \quad E_{K \text { at } B}=E_{\text {Pat } C}+W_{\text {Friction }}$
$\frac{1}{2} m v^{2}=m g x \sin \left(35^{\circ}\right)+(45,0) x$
$\frac{1}{2} 10(8,84)^{2}$ coe $=(10)(9,8) \sin \left(35^{\circ}\right) x+45 x$
$390,73=101,21 x$
$x=3,86 \mathrm{~m} \quad(x=3,85 \mathrm{~m}$ if no rounding off $)$
OR
$W_{\text {net }}=\Delta E_{K}$ and $F_{\text {net }} x=\Delta E_{K}$
$(-45-10(9,8) \sin 35) x=0-\frac{1}{2}(10)(8,84)^{2}$
$x=3,86 \mathrm{~m}$

OR
$W_{\text {net }}=\Delta E_{K}$ and $W_{g}+W_{f}=\Delta E_{K}$
$(10)(9,8) x \cos 125+45 x \cos 180=0-\frac{1}{2}(10)(8,84)^{2}$
$\boldsymbol{x}=\mathbf{3 , 8 6} \mathbf{m}$
OR
$\left(F_{n e t}=m a \quad\right.$ and $\left.\quad v^{2}=u^{2}+2 a s\right)$
$(-45-(10)(9,8) \sin 35)=10 a$
$0=(8,84)^{2}+2(-10,121) x$
$a=-10,12 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
$\boldsymbol{x}=\mathbf{3 , 8 6} \mathrm{m}$
OR
$W_{f}=\Delta E_{P}+\Delta E_{K}$
$W_{f}=m g x \sin 35+\left(0-\frac{1}{2} m v^{2}\right.$
$45 x \cos 180=(10)(9,8) x \sin 35-\frac{1}{2}(10)(8,84)^{2}$
$x=3,86 \mathrm{~m}$
OR
$\left(F_{n e t} \Delta t=m \Delta v\right.$ and

$$
(-45-(10)(9,8) \sin 35) \Delta t=10(0-8,84)
$$

$$
\Delta t=0,87 \mathrm{~s}
$$

$$
\begin{align*}
& \left.s=\left(\frac{u+v}{2}\right) t\right) \\
& x=\left(\frac{0+8,84}{2}\right)(0,87) \\
& \boldsymbol{x}=\mathbf{3}, \mathbf{8 6} \mathbf{~ m} \tag{5}
\end{align*}
$$

$5.7 \quad F_{f}=\mu N$
as slope is increased, Normal force decreases
as $N=m g \cos (\theta)$ OR $\cos (\theta)$ decreases as θ increases OR $\cos (35)<1$
so frictional force decreases
5.8

Extra forces -1 Non attachment-1 No arrows -1
$5.9 \quad F_{f}=m g \sin \left(35^{\circ}\right)$
$F_{f}=10(9,8) \sin \left(35^{\circ}\right)$
$\boldsymbol{F}_{f}=56,21 \mathrm{~N}$
$5.10 \quad F_{f}=\mu F_{N}$
OR

$$
56,21=\mu(10)(9,8) \cos \left(35^{\circ}\right) \text { coe }
$$

$$
\begin{align*}
& \mu=\tan \theta \tag{3}\\
& \mu=\tan 35 \\
& \mu=\mathbf{0 , 7 0} \tag{3}
\end{align*}
$$

5.11 static friction is greater than kinetic friction

OR
Coefficient of static friction greater than coefficient of kinetic friction
OR
While moving, surfaces interact less

QUESTION 6

6.1 6.1.1 Every particle in the universe attracts every other particle with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between (their centres)
6.1.2 $\quad F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
$F_{g}=\frac{\left(6,7 \times 10^{-11}\right)(96)\left(1 \times 10^{13}\right)}{4000^{2}}$
$\boldsymbol{F}_{\boldsymbol{g}}=\mathbf{4 , 0 2 \times 1 0 ^ { - 3 } \mathrm { N }}$
6.1.3 $\quad a_{67}=\frac{F_{g}}{m}$
$a_{67}=\frac{4,02 \times 10^{-3}}{96}$ coe
$a_{67}=4,19 \times 10^{-5} \mathrm{~m} \cdot \mathrm{~s}^{-2}$
OR
$a_{67}=\frac{G M}{r^{2}}$
$a_{67}=\frac{\left(6,7 \times 10^{-11}\right)\left(1 \times 10^{13}\right)}{4000^{2}}$
$a_{67}=4,19 \times 10^{-5} \mathrm{~m} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{kg}^{-1}$
6.1.4 $\quad a_{67}=\frac{G M}{r^{2}}$
$a_{\text {new }}=\frac{G 5 M}{(2 r)^{2}}$
$a_{\text {new }}=\frac{5}{4} \frac{G M}{r^{2}}$
$\frac{a_{\text {new }}}{a_{67}}=\mathbf{1 , 2 5} \mathrm{OR} \frac{a_{67}}{a_{\text {new }}}=\mathbf{0 , 8}$
OR $a_{\text {new }}: a_{67}=5: 4$ OR $a_{67}: a_{\text {new }}=4: 5$
6.2 6.2.1 $F=E q$
$F=\left(4,8 \times 10^{5}\right)\left(25 \times 10^{-9}\right)$
$\boldsymbol{F}=\mathbf{0}, 012 \mathrm{~N}$
6.2.2 on Answer Booklet

Label plates (with + and -)
Direction
Parallel lines (ignore end effects)

QUESTION 7

7.1 Cost $=\frac{100}{1000} \times 6 \times 1,40=\mathbf{R} \mathbf{0 , 8 4}$
7.2 $\quad P=\frac{V^{2}}{R}$
$100=\frac{240^{2}}{R}$
$R=576 \Omega$
7.3 no. of bulbs (in parallel) OR resistance OR $\frac{1}{R}$
7.4 more pathways / branches, makes it easier for charge to flow
7.5 7.5.1 $\quad 5,21$
7.5.2 10,42 (if $\times 10^{-3}$ included in both answers then max $1 / 2$)
7.6 Graph - On Answer Booklet Graph to show Power vs $\frac{1}{R}$

Heading
y-axis title and unit
y-axis scale (plotted points $>\frac{1}{2}$ graph paper, scale must be in sensible multiples)
plotted points (all 6 points plotted within half small block)
line of best fit (with a ruler)
7.7 Power is inversely proportional to resistance
(or power is directly proportional to the inverse of resistance)
straight line graph or linear or constant gradient
line through the origin
7.8 \quad Gradient $=\frac{\Delta y}{\Delta x}$

Gradient $=\frac{\text { values from } y \text {-axis }}{\text { values from } x \text {-axis }} \quad$ (-1 if not shown on graph)
Gradient = 48 203,4 (allow 45790 - 50610)
7.9 P on y-axis, $\frac{1}{R}$ on x -axis means gradient is V^{2}
$\mathrm{V}^{2}=48$ 203, 4 coe
$\mathrm{V}=219,6 \mathrm{~V}$ (allow 214-225)

QUESTION 8

8.1 8.1.1 On Answer Booklet

Concentric circles
Direction

8.1.2 On Answer Booklet

Field line parallel
Force direction
Force labelled and acting on wire
8.1.3 magnetic field due to current interacts with magnetic field due to magnet
8.1.4 wire parallel to field lines
8.2 8.2.1 electrical energy to mechanical (kinetic) energy
8.2.2 split ring commutator
8.2.3 change the direction of the current in the coil every half rotation to that ensure the coil continues rotating (in the same direction)
(NO coe allowed)
8.3 8.3.1 The emf induced is directly proportional to the rate of change of magnetic flux (flux linkage)
8.3.2

- As the cone moves, coil moves relative to magnet
- the coil experiences a change of flux
- so emf is induced in the coil

QUESTION 9

9.1 9.1.1 Photoelectric effect

9.1.2 UV light has a larger frequency than visible light frequency of UV light greater than threshold frequency UV can eject electrons

OR
UV light has a larger energy than visible light energy of UV light greater than work function UV can eject electrons
9.2 9.2.1 Work function is the minimum amount of energy needed to emit an electron from the surface of a metal.
9.2.2 $W_{0}=h f_{0}$
$3,36 \times 10^{-19}=6,6 \times 10^{-34} f_{0}$
$f_{0}=5,09 \times 10^{14} \mathrm{~Hz}$
9.2.3 $c=f \lambda$
$3 \times 10^{8}=f 400 \times 10^{-9}$
$f=7,5 \times 10^{14} \mathrm{~Hz}$
$h f=W_{0}+E_{K}$ max
$\left(6,6 \times 10^{-34}\right)\left(7,5 \times 10^{14}\right)=3,36 \times 10^{-19}+E_{K} \max$
$E_{K \text { max }}=1,59 \times \mathbf{1 0}^{\mathbf{- 1 9}} \mathbf{J}$

Total: 200 marks

