EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (PHYSICS)

TABLE 1PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Speed of light in a vacuum	С	$3,0 \times 10^8 \mathrm{m \cdot s^{-1}}$
Universal gravitational constant	G	$6,7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb's constant	k	$9,0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	9,1 \times 10 ⁻³¹ kg
Planck's constant	h	$6,6 \times 10^{-34} \text{J} \cdot \text{s}$
1 electron volt	eV	$1,6 \times 10^{-19} \text{J}$

TABLE 2PHYSICS FORMULAE

MOTION

$v = u + at$ or $v_f = v_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t$ or $\Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$
$v^2 = u^2 + 2as$ or $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2$ or $\Delta x = v_i \Delta t + \frac{1}{2}a(\Delta t)^2$

FORCE AND MOMENTUM

F _{net} = ma	$F_{net} = \frac{\Delta p}{\Delta t}$ or $F_{net}\Delta t = m\Delta v$	$\Delta p = mv - mu$ or $\Delta p = mv_f - mv_i$
p = mv	$w = F_g = mg$	$F_{f}^{max} = \mu F_{N}$

WORK, ENERGY AND POWER

$W = Fs \text{ or } W = F\Delta x$ or $W = F\Delta x \cos \theta$ $P = \frac{W}{t}$		$\frac{W}{t}$	P = Fv		
$E_{p} = mgh$	E	$F_k = \frac{1}{2}mv^2$	$W_{net} = \Delta E$	к	$efficiency = \frac{power_{out}}{power_{in}}$

GRAVITATIONAL AND ELECTRIC FIELDS

$F = G \frac{m_1 m_2}{r^2}$		$g = G \frac{M}{r^2}$		
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$		

ELECTRIC CIRCUITS

$I = \frac{Q}{t}$	$V = \frac{W}{q}$
$R = \frac{V}{I}$	$emf = I(R_{ext} + r)$
$R_{\rm S} = R_{\rm 1} + R_{\rm 2} + \dots$	$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$
$P = \frac{W}{t}$ o	\mathbf{r} $W = Pt$
W = VIt or W	$= l^2 R t$ or $W = \frac{V^2}{R} t$
P = VI or P	$= l^2 R$ or $P = \frac{V^2}{R}$

ELECTRODYNAMICS

$\Phi = BA\cos\theta$	$emf = -\frac{N\Delta\Phi}{\Delta t}$
$V_{p}I_{p} = V_{s}I_{s}$	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

PHOTONS AND ELECTRONS				
$c = f \lambda$		E = h	f or	$E = \frac{hc}{\lambda}$
$E=W_{_0}+\textit{E}_{\textit{K}(max)}$	W _0 =	$= hf_0$	$E_{\kappa(n)}$	$max) = \frac{1}{2} m v_{max}^2$

DUOTONS AND ELECTRONS