FORMULA SHEET

1. BELT DRIVES

- 1.1 $N_1 \times D_1 = N_2 \times D_2$ 1.2 Belt speed $= \frac{\pi DN}{60}$ where N is in r/min
- 1.3 Belt speed = $\frac{\pi(D+t) \times N}{60}$ (t = belt thickness)
- 1.4 Belt mass = area × length × density (A = thickness × width)

1.5 Speed ratio =
$$\frac{\text{diameter of driven pulley}}{\text{diameter of driving pulley}}$$

- 1.6 Belt length (flat belt) = $[(D + d) \times 1,57] + 2 \times centre distance$
- 1.7 Open belt length = $\frac{\pi (D+d)^2}{2} + \frac{(D-d)^2}{4c} + 2c$

1.8 Crossed belt length =
$$\frac{\pi (D+d)^2}{2} + \frac{(D+d)^2}{4c} + 2c$$

1.9 Ratio between tight side and slack side = $\frac{T_1}{T_2}$

1.10 Power (P) = $\frac{(T_1 - T_2)\pi DN}{60}$ where N is in r/min T₁ = force in tight side T₂ = force in slack side

$$T_1 - T_2 = effective force (T_e)$$

- 1.11 Power (P) = $(T_1 T_2) \times V$ where V = belt speed in m/s
- 1.12 Power (P) = $\frac{2\pi NT}{60}$ where N is in r/min
- 1.13 Width = $\frac{T_1}{\text{permissable tensile force}}$

2. STRESS AND STRAIN

2.1 Stress = $\frac{\text{force}}{\text{area}}$ or $\left(\sigma = \frac{F}{A}\right)$

2.2 Strain (
$$\epsilon$$
) = $\frac{\text{change in length}(\Delta L)}{\text{original length}(L)}$

2.3 Young's modulus (E) =
$$\frac{\text{stress}}{\text{strain}}$$
 or $\left(\frac{\sigma}{\epsilon}\right)$

2.4 Area of a round bar = A =
$$\frac{\pi d^2}{4}$$

2.5 Area of a pipe = A =
$$\frac{\pi(D^2 - d^2)}{4}$$

2.6 Area of a square bar =
$$A = L^2$$
 or $A = L \times W$

3. HYDRAULICS

- 3.1 Pressure (P) = $\frac{\text{force}(F)}{\text{area}(A)}$
- 3.2 Volume = (cross-sectional area) × stroke length
- 3.3 Work done = force × distance

4. KEYS AND KEYWAYS

- 4.1 Width of key = $\frac{\text{diameter of shaft}}{4}$
- 4.2 Thickness of key = $\frac{\text{diameter of shaft}}{6}$
- 4.3 Length of key = 1,5 × diameter of shaft
- 4.4 Standard taper for taper key = 1 in 100 or 1:100

5. LEVERS

5.1 Mechanical advantage (MA) = $\frac{\text{load}(W)}{\text{effort}(F)}$

5.2 Velocity ratio (VR) =
$$\frac{\text{input movement}}{\text{output movement}}$$

- 5.3 Input movement (IM) = effort × distance moved by effort
- 5.4 Output movement (OM) = load × distance moved by load

6. GEAR DRIVES

 $6.1 \qquad \mathsf{N}_1 \times \mathsf{D}_1 = \mathsf{N}_2 \times \mathsf{D}_2$

6.2 Power (P) =
$$\frac{2\pi NT}{60}$$

63	Gear ratio = product of number of teeth on driven gears
0.0	product of number of teeth on driving gears

- 6.4 $\frac{N_{input}}{N_{output}} = \frac{\text{product of number of teeth on driven gears}}{\text{product of number of teeth on driving gears}}$
- 6.5 Torque = force × radius
- 6.6 Torque transmitted = gear ratio × input torque

6.7 Module (m) =
$$\frac{\text{pitch} - \text{circle diameter (PCD)}}{\text{number of teeth (T)}}$$

6.8
$$N_1T_1 = N_2T_2$$

- 6.9 Pitch-circle diameter (PCD) = $\frac{\text{circular pitch}(\text{CP}) \times \text{number of teeth}(\text{T})}{\pi}$
- 6.10 Pitch-circle diameter (PCD) = $m \times T$
- 6.11 Outside diameter (OD) = m(T + 2)
- 6.12 Outside diameter (OD) = Pitch-circle diameter (PCD) + 2 module
- 6.13 Addendum = module (m)
- 6.14 Dedendum = 1,157 m or Dedendum = 1,25 m
- 6.15 Cutting depth = 2,157 m or Cutting depth = 2,25 m
- 6.16 Clearance = 0,157 m or Clearance = 0,25 m
- 6.17 Circular pitch (CP) = $m \times \pi$

6.18 Centre distance between gear A and gear B =
$$\frac{(PCD)_A}{2} + \frac{(PCD)_B}{2}$$

7. SCREW THREADS

- 7.1 Pitch diameter = outside diameter $-\frac{1}{2}$ pitch
- 7.2 Pitch circumference = $\pi \times$ pitch diameter
- 7.3 Lead = pitch × number of starts
- 7.4 Height of screw thread = $0,866 \times \text{pitch}$
- 7.5 Depth of screw thread = $0,613 \times \text{pitch}$

8. INDEXING

8.1	Cincinnati dividing head ta	ble for milling machine
-----	-----------------------------	-------------------------

Cincinnati index plate											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

8.2 Indexing = $\frac{40}{n}$ (where n = number of divisions)