These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.
SECTION A

QUESTION 1

(a) (1) \((x - 3)(x + 1) = 5\)
\begin{align*}
x^2 - 2x - 8 &= 0 \\
(x - 4)(x + 2) &= 0 \\
x &= 4 \text{ or } x = -2
\end{align*}

(3)

(2) \(9^{2x-1} = \frac{3^y}{3}\)
\begin{align*}
3^{2(2x-1)} &= 3^{y-1} \\
3^{4x-2} &= 3^{y-1}
\end{align*}
\begin{align*}
4x - 2 &= x - 1 \\
x &= \frac{1}{3}
\end{align*}

(3)

(3) \(2\sqrt{2 - 7x} = \sqrt{-36x}\)
\begin{align*}
(2\sqrt{2 - 7x})^2 &= (\sqrt{-36x})^2 \\
4(2 - 7x) &= -36x \\
8 - 28x &= -36x \\
x &= -1
\end{align*}

(3)

(b) \(x^2 + 2kx + k = kx + k\)
\begin{align*}
x^2 + kx &= 0 \\
x(x + k) &= 0
\end{align*}
\begin{align*}
\therefore x &= 0 \text{ or } x = -k
\end{align*}

Point \((0; k)\) and \((-k; k - k^2)\)

(5)

(c) (1) \(x = \frac{-n \pm \sqrt{n^2 - 4(9)(49)}}{2(9)}\)
\begin{align*}
x &= \frac{-n \pm \sqrt{n^2 - 1764}}{18}
\end{align*}

(2)

(2) \(n^2 - 1764 = 0\)
\begin{align*}
\therefore n &= 42 \text{ or } n = -42
\end{align*}

(2)
QUESTION 2

(a) (1) \(x = -1 \) and \(y = 2 \)

(2) \(x = \frac{-3}{2} \) and \(y = 3 \)

(b) (1) Let \(x = 0 \) \(2.3^0 - 1 = 1 \) \(y \)-intercept = (0;1)

Let \(y = 0 \) \(2.3^y - 1 = 0 \)

\[3^x = \frac{1}{2} \]

\(x = -0.63 \)

\(x \)-int \((-0.63, 0)\)

(2) \[3 \]

[15]
QUESTION 3

(a) Deposit paid =
\[1800000 \times \frac{60}{100} = R1\,080\,000 \]
Balance owed =
\[OR \ 180000 \times \frac{40}{100} = R720\,000 \]
Therefore R720 000 was financed by the bank was paid by the bank.

\[720000 = x \left(1 - \left(1 + \frac{8}{1200}\right)^{-10\times12}\right) \]
\[x = R8\,736 \]

(b) \[A = 720000 \left(1 + \frac{8}{1200}\right)^{3\times12} \]
\[A = R914\,570 \]
\[P = 8\,736 \left(1 + \frac{8}{1200}\right)^{36} - 1 \]
\[F = R354\,119 \]
Balance of the loan:
\[R914\,571 - R354\,119 = R560\,452 \]

Alternate Solution:
\[P = 8\,736 \left(1 - \left(1 + \frac{8}{1200}\right)^{-7\times12}\right) \]
Balance of the loan: \[P = R560\,495 \]
(c) Amount paid towards the loan after 3 years = R720 000 – R560 452
= R159 548
Amount paid through monthly installments = R8 736×36
= R314 496
Interest paid = R314 496 – R159 548
= R154 948
Therefore percentage of total paid to bank as interest charges over 3 years
\[
\frac{154 948}{314 496} \times 100 = 49\%
\]

Alternative:

Using the Balance of loan of R560 495 (done using Pv formula)
Amount paid towards the loan after 3 years = R720 000 – R560 495
= R159 505
Amount paid through monthly installments = R8 736×36
= R314 496
Difference = R314 496 – R159 505
= R154 991
Therefore percentage of total paid to bank as interest charges over 3 years = 49%
QUESTION 4

(a) \(f(x) = \frac{7}{x} \)

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\[f'(x) = \lim_{h \to 0} \frac{\frac{7}{x+h} - \frac{7}{x}}{h} \]

\[f'(x) = \lim_{h \to 0} \frac{7x - 7x - 7h}{x(x+h)} \times \frac{1}{h} \]
\[f'(x) = \lim_{h \to 0} \frac{-7h}{x(x+h)} \times \frac{1}{h} \]
\[f'(x) = \lim_{h \to 0} \frac{-7}{x(x+h)} \]
\[f'(x) = \frac{-7}{x^2} \] (4)

(b) \(D_x \left(\frac{14\pi}{x^\frac{1}{3}} - 3\sqrt[3]{x^2} \right) \)

\[D_x \left(14\pi x - 3x^\frac{2}{3} \right) \]

\[= 14\pi - 2x^{-\frac{1}{3}} \]
\[= 14\pi - \frac{2}{x^{\frac{1}{3}}} \]
\[= 14\pi - \frac{2}{\sqrt[3]{x}} \] (4) [8]
QUESTION 5

(a) \[18 = (6) + (4)(d) \]
\[d = 3 \]
\[S_{38} = \frac{38}{2} (2(6) + (37)(3)) \]
\[S_{38} = 2337 \] (4)

(b) (1) \[\frac{1000}{3} + \frac{1000}{3^2} + \frac{1000}{3^3} \]
\[= \frac{13000}{27} \] (3)

(2) \[S_\infty = \frac{\frac{3}{1}}{1 - \frac{1}{3}} \]
\[S_\infty = 500 \]
\[\therefore \text{ Fraction } = \frac{500}{1000} = \frac{1}{2} \] (3)

Alternative:

(1) Day 1: \[\frac{1}{3} \text{ of } 1000 = \frac{1000}{3} \] (as decimals: 333,3)

Day 2: \[\frac{1000}{3} + \left(\frac{1}{3} \text{ of } \frac{1000}{3} \right) = \frac{4000}{9} \] (as decimal: 444,4)

Day 3: \[\frac{4000}{9} + \left(\frac{1}{3} \text{ of } \frac{4000}{9} \right) = \frac{16000}{27} \] (as decimal: 592,6)

Total area blocked = \[\frac{16000}{27} \approx 592,6 \text{ sq units} \]

(2) \[r = \frac{4}{3} \]

Since \(r > 1 \), the series diverges

Eventually, the entire screen would be blocked out.
QUESTION 6

(a) (1) (iii) Roots are real and equal (1)

(2) (i) Roots are non-real (1)

(3) (ii) Roots are real and unequal (1)

(b) (1) \[y = a(x - 3)(x - 7) \]
\[6 = a(6 - 3)(6 - 7) \]
\[a = -2 \]
\[y = -2(x - 3)(x - 7) \]
\[y = -2x^2 + 20x - 42 \] (4)

(2) \[y = -2x + c \]
\[0 = -2(3) + c \]
\[c = 6 \]
\[y = -2x + 6 \] (3)

(3) C and D have x-co-ord of 5.
\[y- \text{co-ord C: } y = -2(5)^2 + 20(5) - 42 \therefore y = 8 \]
\[C (5 ; 8) \]
\[y- \text{co-ord D: } y = -2(5) + 6 \therefore y = -4 \]
\[D(5 ; -4) \]
Length \(CD = 12 \) units (4)

Alternative:

Vertical Dist between graphs = \(-2x^2 + 20x - 42 - (-2x + 6)\)
\[= -2x^2 + 22x - 48 \]
Sub. Axis of Symm: \[x = 5 \]
\[CD = -2(5)^2 + 22(5) - 48 \]
\[= 12 \]

(c) \[y = -\frac{1}{50}(x^2 - 100) \therefore x = -\frac{1}{50}(y^2 - 100) \]
\[y^2 = 100 - 50x \]
\[y = \sqrt{100 - 50x} \quad 0 \leq x \leq 2 \] (3)

[17]

82 marks
SECTION B

QUESTION 7

(a) \[f'(x) = 9x^2 + 2bx + c \]
\[f'(1) = 9 + 2b + c \]
\[12 = 9 + 2b + c \]

\[f''(x) = 18x + 2b \]
\[f''(1) = 18 + 2b = -24 \]
\[\therefore b = -21 \]
\[12 = 9 + 2(-21) + c \]
\[c = 45 \]

\[\therefore f(x) = 3x^3 - 21x^2 + 45x - 27 \quad (7) \]

(b) \[f''(x) < 0 \]
\[18x - 42 < 0 \]
\[x < \frac{7}{3} \quad (3) \]

(c) \[f'(x) = 9x^2 - 42x + 45 \]
\[f'(2) = 9(2)^2 - 42(2) + 45 \]
\[f'(2) = -3 \]

\[y = -3x + c \]
\[3 = -3(2) + c \]
\[c = 9 \]
\[y = -3x + 9 \]
\[\therefore MN = -3p + 9 \quad (5) \]
(d) \(f'(x) = 9x^2 - 42x + 45 \)

\[f'(x) = 0 \text{ when } 0 = 9x^2 - 42x + 45 \]
\[\therefore (3x^2 - 14x + 15) = 0 \]
\[\therefore (3x - 5)(x - 3) = 0 \]

\[x = 3 \text{ or } x = \frac{5}{3} \]

\[f(x) = 0 \text{ when } 0 = 3x^3 - 21x^2 + 45x - 27 \]
\[\therefore (x - 3)(3x^2 - 12x + 9) = 0 \]
\[\therefore 3(x - 3)^2 (x - 1) = 0 \]

\[x = 1 \text{ or } x = 3 \]
\[\therefore x < 1 \text{ or } \frac{5}{3} \leq x < 3 \]

Alternative:

\[\frac{9x^2 - 42x + 45}{3x^3 - 21x^2 + 45x - 27} \leq 0 \]
\[\therefore \frac{3(3x - 5)(x - 3)}{3(x - 3)^2(x - 1)} \leq 0 \]
\[\therefore \frac{3x - 5}{(x - 3)(x - 1)} \leq 0 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
</table>

\[x < 1 \text{ or } \frac{5}{3} \leq x < 3 \]

(8)

[23]
QUESTION 8

(a) \[10 - 3y \quad ; \quad 7 \quad ; \quad 15 \quad ; \quad 8y + 1\]
\[-3 + 3y \quad 8 \quad 8y - 14 \rightarrow \text{first level difference} \]
\[11 - 3y \quad 8y - 22 \rightarrow \text{second level difference} \]
\[\therefore 11 - 3y = 8y - 22 \]
\[\therefore y = 3 \quad (4)\]

(b)

(1) \[a = 250 \quad r = 4\]
\[S_n = \frac{a(r^n - 1)}{r - 1} \]
\[21845 = \frac{250(4^n - 1)}{3} \]
\[4^n = 262144 \quad n = 9 \]
\[\therefore \text{Level 9} \quad (5)\]

(2) \[r = 4 \quad a = 1\]
\[T_n = 4^{n-1} \]
\[\therefore T_{n+1} - T_n = 4^n - 4^{n-1} \]
\[\therefore 4^n - 4^{n-1} = 6 \times 2^{17} \]
\[\therefore 4^n \left(1 - \frac{1}{4}\right) = 6 \times 2^{17} \]
\[\therefore 4^n = 4^{10} \quad n = 10 \]
\[\therefore \text{between the 10th and 11th levels.} \quad (7)\]
QUESTION 9

(a) For an odd product, the two numbers must be odd
 First draw: 4 odd out of 7 cards
 Second Draw: 3 odd out of 6
 \[P(\text{Odd Product}) = \frac{4}{7} \times \frac{3}{6} \]
 \[P(\text{Odd Product}) = \frac{2}{7} \approx 0,3 \] (4)

(b) \[
\begin{array}{c}
\text{A} \\
0,3 \\
\text{B} \\
0,35 \\
0,1
\end{array}
\]

(1) (5)

(2) \[P(A \text{ and } B') = 0,55 - 0,25 = 0,3 \] (2)

(3) \[P(A \text{ or } B') = 1 - 0,35 = 0,65 \] (1)

(c) (1) Number of different orders possible \(= 6! = 720 \) (1)

(2) If Rome, Madrid and Florence are grouped, different orders of objects \(= 4! = 24 \) (1)

(3) \[P(\text{Rome, Madrid and Florence grouped}) = \frac{3 \times 4!}{6!} = \frac{144}{720} = 0,2 \] (3) [15]
QUESTION 10

(a) \[(5\sqrt{3})^2 = x^2 + p^2 \] pythag
\[p^2 = 75 - x^2 \]

\[V = \frac{1}{3} \pi (75 - x^2)(x) \]
\[V = 25\pi x - \frac{1}{3} \pi x^3 \]
\[V' = 25\pi - \pi x^2 \]
\[0 = 25\pi - \pi x^2 \]
\[x = \pm 5 \]
\[x = 5 \] (7)

Alternative: If cone is inverted:

An inverted cone sharing the same base as the hemisphere will have a maximum volume since its radius will be at its maximum.
Hence the maximum height of the cone will be equal to the radius of the hemisphere.
Therefore: Radius of cone will be \(5\sqrt{3} \)
Hence: Height of the Cone will also be \(5\sqrt{3} \)

(b) Busi and Khanya will meet 25 metres from the winning line.
Busi crosses the finishing line first.
Khanya will be \(25 - \frac{3}{4}(25) \) metres from the winning line.
Khanya will be 6,25 metres from the winning line. (7)

Note:
Calculating the 93,75 or 6,25 and implying that Busi was ahead.
If all calculations done correctly, but stated Khanya was ahead.

When working with where Busi was when Khanya crossed the line: 8,33 m ahead.

If stating that Busi's speed was \(x \) km/h therefore Khanya's speed is \(\frac{3}{4}x \). Busi runs 125 m.

Just stating Busi wins.

Just stating Busi runs 125 m.
Alternative:

If Busi ran 100 m in \(x\) seconds
Then Khanya ran 75 m in \(x\) seconds
\[\therefore \text{Khanya would run 100 m in: } \left(\frac{x}{75} \times 100\right) \text{ seconds}\]

When Busi started 25 m behind the starting line:
She ran: 125 m in: \(\left(\frac{x}{100} \times 125\right)\) seconds
\[\therefore \text{in } \left(\frac{x}{75} \times 100\right) \text{ seconds, Khanya would run:}\]
\[\left(\frac{100}{\frac{x}{75} \times 100}\right) \times \left(\frac{x}{100} \times 125\right)\]
\[= 93.75 \text{ m}\]

Alternative:

Busi and Khanya will meet 25 metres from the winning line.
Busi crosses the winning line first
Khanya will be \(25 - \frac{3}{4} (25)\) metres from the winning line.
Khanya will be 6.25 metres from the winning line.

Alternative:

Busi crosses the winning line first
Khanya would have covered \(\frac{3}{4}(125) = 93.75\) m when Busi crossed
Khanya will be 6.25 metres from the winning line.

[14]

\[68\text{ marks}\]

Total: 150 marks