MATHEMATICS: PAPER III

MARKING GUIDELINES

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

SECTION A

QUESTION 1

[LO 1: AS 12.1.3]
(a) $T_{1}=2$

$$
\begin{align*}
& \mathrm{T}_{1+1}=-(2)\left(\frac{1+2}{1+1}\right)=-2\left(\frac{3}{2}\right)=-3 \\
& \mathrm{~T}_{2+1}=-(-3)\left(\frac{2+2}{2+1}\right)=3\left(\frac{4}{3}\right)=4 \\
& \mathrm{~T}_{3+1}=-(4)\left(\frac{3+2}{3+1}\right)=-4\left(\frac{5}{4}\right)=-5 \tag{4}
\end{align*}
$$

(b) $2-3+4-5+6-7+8 \ldots+50-51=(-1)+(-1)+(-1)+(-1) \ldots=-25$

OR

$$
\begin{array}{lll}
2+4+6+\ldots+50 & \text { and } & -3-5-7 \ldots-51 \\
= & \frac{25}{2}(52) & =\frac{25}{2}(-54) \\
=(25)(26) & =(25)(-27) \\
=650 & =-675
\end{array}
$$

add two together $=-25$
OR
$s_{1}=2 ; s_{2}=-1 ; s_{3}=3 ; s_{4}=-2 ; s_{5}=4 \ldots . . . s_{50}=-25$

QUESTION 2
 [LO 4: AS 11.4.2; 12.4.2]

(a) (1) $3 \times 5 \times 3 \times 2=90$
(2) $8!=40320$
(3) Total number of arrangements $=4!\times 5!=2880$
5 shirts \square
\square
Probability $=\frac{4!\times 5!}{8!}=\frac{1}{14}=0,0714$ OR $\frac{2880}{40320}$
(b) $\frac{7!}{3!\times 2!}=420$

QUESTION 3

[LO 4: AS 11.4.2; 12.4.2]
(a) $\frac{1}{3}$
(b) $\frac{4}{9}$
(c) $\frac{2}{9}$
(d) $\frac{5}{9}$

QUESTION 4 [LO 4: AS 11.4.2; 12.4.2]

(a) 0,88
(b) $\quad \mathrm{P}($ does; doesn't; doesn't $)=(0,12)(0,88)^{2}=\frac{1452}{15625}=0,092928$

OR
(doesn't; does; doesn't) OR (doesn't; doesn't; does)
P (does; does; doesn't $)=(0,12)^{2}(0,88)=\frac{198}{15625}=0,012672$
P (does; does; does) $=(0,12)^{3}=\frac{27}{15625}=0,001728$

$=3(0,092928)+3(0,012672)+0,001728=0,318528$
OR
$1-\operatorname{Prob}$ (none) $=1-(0,88)^{3}=\frac{4977}{15625} \approx 0,3185$

QUESTION 5
 [LO 4: AS 11.4.2; 12.4.2]

(a) $0,92 \times 700=644$

OR
$0,08 \times 700=56$
$700-56=644$
(b) $0,72-\mathrm{x}+\mathrm{x}+0,48-\mathrm{x}=0,92$
$-\mathrm{x}=-0,28$
$\mathrm{x}=0,28$
So probability of using exactly one facility $=0,92-0,28=0,64$
$504+336=840$
OR
$840-644=196$
so $\mathrm{x}=196$
$\frac{308+140}{700}=\frac{448}{700}=\frac{16}{25}=0,64$
(c) $\quad \mathrm{P}($ tennis \cap golf $)=0,28$
$\therefore \mathrm{P}($ tennis $) \times \mathrm{P}$ (golf) $\neq \mathrm{P}$ (tennis \cap golf $)$
\therefore events are not independent.

QUESTION $6 \quad$ [LO 4: AS 12.4.1]

(a) $\mathrm{A}=14,0566$
$\mathrm{B}=0,9282$ each $\therefore \mathrm{y}=0,9282 \mathrm{x}+14,0566$
(b) $\hat{y}=0,9282(160)+14,0566=162,5686$ OR $160 \hat{y}=162,5618$
(c) Candidate G
(d) choice (iii) - the r value would be closer to 1 for case 2 than for case 1

QUESTION 7 [LO 4: AS 12.4.3]

(a) (1) $\bar{x}=39,5$
(2) (i) $\sigma=11,1692$
(ii) $\quad \sigma^{2}=124,75$
(b) for drawing with endpoints plotted together with cumulative frequency.
for anchoring at ($10 ; 0$)

Estimated median $=38$ or 39 (from their ogive)
(c) below 25 grams is about 8% and below 40 grams is 55% therefore between them is 47% (mark according to their graph)
(d) Mean would go up/increase

Median would stay same
Standard deviation would go up/increase

QUESTION 8

[LO 1: AS 12.4.1 and 11.4.3]
(a) $\bar{x}-\sigma n=$

$$
42-0,06=41,94
$$

$\bar{x}+\sigma n=$
$42+0,06=42,06$
$42-0,06=$
41,94
$42+0,06=$
This is within 1 standard deviation either side of the mean.
Therefore unacceptable $100 \%-68 \%=32 \%$
(b) standard deviation $=0,03$

So 41,94 would be within 2 standard deviations and so would 42,06 . Now $4,8 \%$ would be unacceptable.

SECTION B

QUESTION 9

[LO 3: AS 12.3.2]
(a) $\quad \hat{\mathrm{O}}_{1}=100^{\circ}$ ext angle of a triangle
(b) $\quad \hat{\mathrm{H}}_{1}=50^{\circ}$ angle at centre
(c) $\hat{\mathrm{T}}=130^{\circ}$ opp. angles cyclicquad
(d) $\hat{\mathrm{A}}_{2}=28^{\circ}$ angles of a triangle
$\hat{H}_{2}=28^{\circ}$ alt angles EH//AF

QUESTION 10
 [LO 3: AS 11.3.2]

(a) $\frac{x}{9}=\frac{\frac{2 x}{3}}{x+3} \quad$ prop int theorem

$$
\begin{align*}
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=3 \tag{4}
\end{align*}
$$

$\therefore \mathrm{DL}=\mathrm{x}+3=6$
and $\mathrm{DL}=\mathrm{LN}$
and so L is now the midpoint of $D N$
(b) $\mathrm{DE}=2,8$ units
(c) $\frac{\text { Area } \triangle \mathrm{RED}}{\text { Area } \triangle \mathrm{REN}}=\frac{\mathrm{RD}}{\mathrm{RN}}=\frac{2}{14}=\frac{1}{7}$ same height

Area \triangle REN $=7 \times$ Area \triangle RED $=18,9$ units 2

OR

AreaRED $=\frac{1}{2} \cdot 3 \cdot 2 \cdot \sin R \quad$ and \quad AreaREN $=\frac{1}{2} 3 \cdot 14 \cdot \sin 64,15{ }^{\circ}$
$2,7=3 \sin R \quad=18,9$ units 2
$R=64,15^{\circ}$

QUESTION 11 [LO 3: AS 12.3.2]

Statement	Reason
(a) $\quad \hat{E}_{3}=90^{\circ}$	Angle in a semi-circle
$\therefore \hat{T}_{2}=90^{\circ}$	Co-interior angles; KO//EL
$\therefore C T=T E$	Line from centre perpendicular to chord Or Midpoint theorem Or Similar triangles COT and CEL

(b) $\quad \hat{E}_{1}+\hat{E}_{2}=\hat{L}$	tan chord theorem alt seg theorem
But $\hat{L}=\hat{O}_{3}$	Corres. angles KO//EL
$\therefore \hat{O}_{3}=\hat{E}_{1}+\hat{E}_{2}$	
\therefore COEK is a cyclic quadrilateral	Converse angles same segment Line subtends equal angles

(c) $\operatorname{In} \Delta \mathrm{COT}$ and $\triangle \mathrm{KET}$
$\hat{\mathrm{C}}=\hat{\mathrm{K}} \quad$ (angles same segment)
$\hat{\mathrm{O}}_{3}=\hat{\mathrm{E}}_{1}+\hat{\mathrm{E}}_{2}$ (proved)
$\hat{\mathrm{T}}_{1}=\hat{\mathrm{T}}_{3}$ (3 ${ }^{\text {rd }}$ angle of triangles/vert. opp.)
$\therefore \Delta \mathrm{COT} / / / \Delta \mathrm{KET}$ (AAA)

OR

$\hat{\mathrm{T}}_{2}=90^{\circ}$ (proved)
$\therefore \hat{\mathrm{T}}_{1}=\hat{\mathrm{T}}_{3}=90^{\circ} \quad(\angle \mathrm{s}$ on stline)
In \triangle COT and \triangle KET
$\hat{\mathrm{T}}_{1}=\hat{\mathrm{T}}_{3}$ (proved)
$\hat{\mathrm{O}}_{3}=\hat{\mathrm{E}}_{1}+\hat{\mathrm{E}}_{2}$ (proved)
$\hat{\mathrm{C}}=\hat{\mathrm{K}} \quad($ sum $\angle \mathrm{s}$ of triangle)
$\therefore \Delta \mathrm{COT} / / / \Delta \mathrm{KET}$ AAA
(d) $\Delta \mathrm{COT} / / / \Delta \mathrm{KET}$
$\frac{\mathrm{OT}}{\mathrm{ET}}=\frac{\mathrm{CT}}{\mathrm{KT}}$
$\frac{1}{\mathrm{ET}}=\frac{\mathrm{CT}}{9}$
But $\mathrm{ET}=\mathrm{CT}$ and so
$\mathrm{CT}^{2}=9$ and $\mathrm{CT}=3$

$\therefore O C=\sqrt{10}$ (by Pythag)

$$
\begin{aligned}
& \triangle C O K: \cos \hat{O}_{3}=\frac{C O}{10} \text { and } \triangle C O T: \cos \hat{O}_{3}=\frac{1}{C O} \\
& \therefore C O^{2}=10 \text { and } C O=\sqrt{10}
\end{aligned}
$$

(e) $\hat{K}=\hat{C}($ similar $\Delta \mathrm{s})$
$\tan \hat{C}=\frac{1}{3}$ or $\sin \hat{C} / \cos \hat{C}$
$\therefore \hat{C}=\hat{K}=18,43^{\circ}$
OR

$$
\begin{aligned}
& \text { Area } \triangle C O T=\frac{1}{2}(3)(1)=1,5 \\
& \frac{1}{2}(3)(\sqrt{10}) \sin \hat{C}=1,5 \\
& \hat{C}=18,43^{\circ}
\end{aligned}
$$

QUESTION 12

(a) This circle has 16 arcs each subtending x° at the centre.
$16 \mathrm{x}=360^{\circ} \quad$ (angles about a point)
$16 x=360$
$x=22,5^{\circ}$
$\mathrm{x}=22,5$
$\therefore P \hat{O} J=6 \times\left(22,5^{\circ}\right)=135^{\circ}$
$\therefore P \hat{C} J=67,5^{\circ} \quad$ (angle at centre twice angle at circum)
(b) $\quad P \hat{Q} J=112,5^{\circ}$ (opp angles cyclic quad suppl)

