These marking guidelines were used as the basis for the official IEB marking session. They were prepared for use by examiners and sub-examiners, all of whom were required to attend a rigorous standardisation meeting to ensure that the guidelines were consistently and fairly interpreted and applied in the marking of candidates' scripts.

At standardisation meetings, decisions are taken regarding the allocation of marks in the interests of fairness to all candidates in the context of an entirely summative assessment.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines, and different interpretations of the application thereof. Hence, the specific mark allocations have been omitted.
SECTION A

QUESTION 1
[LO 1: AS 12.1.3]

(a) (1) \(T_8 = 2^8 - 1 = 255 \) \(\text{ (2) } \)

(2) \(T_{k+1} = 2 \times T_k + 1 \quad \text{with } k \in \mathbb{Z}; \ k \geq 1 \) \(\text{ ; } T_1 = 1 \)

or \(T_{k+1} = T_k + 2^k \quad \text{with } k \in \mathbb{N} \text{ or } \mathbb{Z}; \ k \geq 1 \) \(\text{ ; } T_1 = 1 \) \(\text{ (3) } \)

(b) \(T_2 = \frac{3x + 2}{2 - 1} = 3x + 2 \)

\[T_3 = \frac{3x + 2 + 2}{3 - 1} = \frac{3x + 4}{2} \] \(\text{ (4) } \)

QUESTION 2
[LO 4: AS 11.4.2; 12.4.2]

(a) \(3 \times 6 \times 5 \times 4 = 360 \) \(\text{(3)} \)

(b) \(\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{3}{10} \) \(\text{ or } \) \(P(R; W) + P(W; W) + P(G; W) \)

\[= \frac{97}{300} = 0.32 \]

\[= \left(\frac{5}{10} \times \frac{3}{9} \right) + \left(\frac{3}{10} \times \frac{3}{10} \right) + \left(\frac{2}{10} \times \frac{3}{9} \right) \] \(\text{ (6) } \)

(c) (1) \(8! \) or \(40320 \) \(= 0.32 \) \(\text{ (1) } \)

(2) \(3! \times 6! = 4320 \) \(\text{ (3) } \)

(3) \(\frac{5!}{8!} = \frac{1}{336} \) \(\text{ or } \) \(= 2.97 \times 10^{-3} \) \(\text{ (3) } \)

QUESTION 3
[LO 4: AS 11.4.2; 12.4.2]

(a) (1) \(P(CU) = \frac{48}{150} \) \(= \frac{8}{25} \) \(= 0.32 \)

(2) \(\frac{4 + 8 + 11}{150} \) \(= \frac{23}{150} \) \(= 0.1533 \) \(\text{ (5) } \)

or

(3) \(\frac{50}{150} \)

(4) \(\frac{71}{150} \)

\(P(C) \times P(F) = \frac{50}{150} \times \frac{71}{150} \)

\[= 0.1577 \]

\(P(C \cap F) = \frac{19}{150} = 0.1267 \)

these are not equal and so events A and B are not independent. \(\text{ (5) } \)

[10]
QUESTION 4 [LO 4: AS 12.4.1]

(a) Negative As households with single parents increase, mean number of children decreases. (1)

(b) (1)
\[A = -1,159,2558 \]
\[B = 0,2652 \]
\[r = 0,9175 \] (6)

(2)
\[y = 0,2652 \times (15000) - 1,159,2558 \]
\[= 2,818,7442 \]
\[= 2,819 \] (2)

(3) No, even although the correlation coefficient is strong and good, this value for the independent variable x is well outside of the data values used – extrapolation – so I would be wary, not that reliable. (2)

[11]

QUESTION 5 [LO 1: AS 12.4.1 and 11.4.3]

(a) It is an increase in one person out of 1000 which is 0,1% not 100% (1)

(b) • Women stopped taking the contraceptive
• Resulted in more unwanted pregnancies
• Resulted in more abortions (1)

[2]

QUESTION 6 [LO 4: AS 12.4.3]

(a)
<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Midpoint of Interval</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10 – 20</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
| 20 – 30 | 25 | 25 | (1)

(b) 42,1538 (3)

(c) 21,7763 (2)

(d) (1) FALSE
(2) TRUE
(3) FALSE
(4) FALSE (4)

[10]

QUESTION 7

\[0,34 + 0,34 + 0,136 = 0,816 \]
\[0,816 \times 200 \]
\[= 163 \] [3]
QUESTION 8 [LO 3: AS 11.3.2] [LO 3: AS 12.3.2]

(a) \(\Delta A BF \parallel \Delta D E F \)

(b) \(AF = 9 \) since \(AD = 15 \) and \(FD = 6 \)
\[\frac{AB}{DE} = \frac{AF}{DF} = \frac{BF}{FE} = \frac{9}{6} \] \(\therefore \) Similar triangles
\[\frac{BF}{FE} = \frac{DC}{DE} = \frac{3}{2} \] \(\text{Line parallel one side in } \Delta \)

(c) Area \(\Delta B E C = 172.6 \)
\[\frac{1}{2} \times 15 \times BE \times \sin 67^\circ = 172.6 \]
\[BE = \frac{172.6 \times 2}{15 \times \sin 67^\circ} = 25.0008 \]
\[\therefore \text{FE} = \frac{2}{5} \times 25 = 10 \]

[8]

QUESTION 9 [LO 3: AS 12.3.2]

(a) \(\hat{N}_1 = 65^\circ \) tan chord theorem
\(\hat{Y}_2 = 65^\circ \) tan chord theorem or tangents from same point
\(\hat{S}_1 = 65^\circ \) Corresponding angles AN //SV

(b) \(\hat{S}_1 = \hat{N}_1 = 65^\circ \) proved above
\[\therefore \text{VYSN is a cyclic quadrilateral} \]
Converse angles same segment.

(c) \(\hat{V}_1 + \hat{V}_2 = 50^\circ \) angles of a triangle
\(\hat{S}_2 = 50^\circ \) exterior angle of cyclic quad VYSN
\[\therefore \text{VYSN is cyclic proved} \]
\[\therefore \hat{N}_3 = 65^\circ \]
\[\therefore \hat{S}_3 = 50^\circ \]
Supplementary angles straight line
\[\therefore \hat{N}_3 = 65^\circ \]
Sum \(\angle \text{s of a triangle} \)
\[\therefore \text{ASN is isosceles sides opposite equal angles} \]

[11]
QUESTION 10 [LO 3: AS 12.3.2] [LO 3: AS 11.3.2]

(a) \(\text{rad} \perp \text{tang}\)

(b) co-interior angles \(\text{EN} // \text{RQ}\) \(\perp\) to chord

(c) \(\hat{V} = \hat{E}_3\) angles same segment
\(\hat{E}_3 = \hat{Q}_1\) alternate angles \(\text{EU} // \text{RQ}\)
\(\therefore \hat{V} = \hat{Q}_1\)
\(\hat{N} = 90^\circ = \hat{E}_2\) given
\(\therefore \hat{U}_4 = \hat{R}\) Third angle of triangle
\(\therefore \Delta \text{VNU} // // \Delta \text{QER}\) AAA

(d) \(\frac{\text{VN}}{\text{QE}} = \frac{\text{NU}}{\text{ER}}\) similar triangles
but \(\text{NU} = \text{EN}\) proved
so \(\frac{\text{EN}}{\text{ER}} = \frac{\text{VN}}{\text{EQ}}\)

(e) \(\frac{12}{\text{EQ}} = \frac{6}{4}\)
\(\therefore \text{EQ} = 8\)
Now in \(\Delta \text{ERQ}\): \(RQ^2 = 8^2 + 4^2\) Theorem Pythag \(RQ = 4\sqrt{5}\) units

[13]
QUESTION 11 [LO 3: AS 11.3.2]

(a) Area of 1 = \frac{1}{2}ac
Area of 2 = \frac{1}{2}a(c + 2c) = \frac{1}{2}a.c \times 3
Area of 3 = \frac{1}{2}a(2c + 3c) = \frac{1}{2}a.c \times 5
Area of 4 = \frac{1}{2}a(3c + 4c) = \frac{1}{2}a.c \times 7

\therefore \text{Area} 1 : \text{Area} 2 : \text{Area} 3 : \text{Area} 4 = 1 : 3 : 5 : 7

OR
Let Area of 1 = x
Then Area of 1 + Area of 2 = 4x
Area of 1 + Area of 2 + Area of 3 = 9x
Area of 1 + Area of 2 + Area of 3 + Area of 4 = 16x

\therefore \text{Area of 1} : \text{Area of 2} : \text{Area of 3} : \text{Area of 4} = x : 3x : 5x : 7x = 1 : 3 : 5 : 7 \quad (5)

(b) Area of 3 = \frac{5}{16} \times 1200 \quad \text{OR}
= 375 \text{mm}^2
Area of 1 = \frac{1}{16} \times 1200
= 75 \text{ mm}^2
So Area of 3 = 5 \times 75 = 375 \text{ mm}^2 \quad (2)

[7]

Total: 100 marks