

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 16 pages.

Please turn over

NOTE:

- If a candidate answered a question TWICE, mark the FIRST attempt ONLY. •
- If a candidate crossed out an attempt of a question and did not redo the question, mark the • crossed out question.
- Consistent accuracy applies in ALL aspects of the memorandum. •

1.1	The number of times the CD was played.	✓ answer
	Afrikaans: Getalkerewat die CD gespeel is.	(1)
1.2	Scatter plot showing the number of times a CD was playedvs the CD sales in the following week	 I marks if 5–9 points are plotted correctly 1 mark if 1–4 points are plotted correctly. (3)
1.3	a = 293,06 (293,057554) b = 74,28 (74,28057554) $\hat{y} = 293,06 + 74,28x$	$\begin{array}{c} \checkmark \checkmark \checkmark \text{ calculating } a \\ \text{and } b \\ \checkmark \text{ equation} \\ (4) \end{array}$
1.4	r = 0.95 (0.9458185)	$\checkmark \checkmark$ answer (2)
1.5	$\hat{y} \approx 293,06 + 74,28(45)$ $\approx 3635,66$ ≈ 3635 $\approx 3650 \text{ (to the nearest 50)}$ Note: Penalise 1 mark for incorrect rounding off.	 ✓ substitution ✓ answer (2)
1.6	There is a very strong positive relationship between the number of times that a CD was played and the sales of that CD in the following week.	✓ strong (1) [13]

2.1	Yes. The events I It is not possible time. There is no P(Pass and Fail)	Pass and Fa for pass and intersection	ail are mutua 1 fail to take n between th	lly exclusive. place at the same e two sets.	✓ Yes ✓ P(Pass and Fail) = $0 / no$ intersection between the sets. (2)
	Note: Note: If a candidate answers 'No' then award 0 marks P(Pass) = 0,59 P(Fail) = 0,41 P(Pass) + P(Fail) = 0,59 + 0,41 =1 P(Pass and Fail) = 0 / No intersection of the sets The events Pass and Fail are mutually exclusive.				 ✓ Yes ✓ P(Pass and Fail) = 0 / No intersection between the sets
	Afrikaans Ja. Die gebeurten uitsluitend. Dit is nie moontli nie. P(Slaag en I	iisse Slaag ik dat slaag Druip) = 0	en Druip is en druip gel	onderling yktydig plaasvind	$\checkmark Ja \\ \checkmark P(Slaag en Druip) = 0 / geen snyding (2)$
2.2		DACC	EAH	ΤΟΤΑΙ	
	Males	16	FAIL 32	78	
	Females	72	50	122	
	Total	118	82	200	
	$P(Male) = \frac{78}{200} =$ $P(Pass) = \frac{118}{200} =$ $P(Male and Pass)$ $P(Male) \times P(Pass)$	= 0,39 0,59 $= \frac{46}{200} = 0$ $= 0,39 \times 0$ = 0,23	Note: If a candida then award 0,23 0,59 (0,230	te answers 'No' 0 marks 1)	$✓ P(Male) = \frac{78}{200} = 0,39 \text{ or}$ $P(Pass) = \frac{118}{200} = 0,59$ $✓ P(Male \text{ and } Pass) = 0,23$ $✓ P(Male) × P(Pass) = 0,23$
	$\therefore P(Male) \times P(Passing the constraints)$	ass) = P(Ma mpetency to	ale and Pass) est is indepe	ndent of gender.	✓ conclusion (4)

OR 122	✓ P(Female) = $\frac{120}{200}$ = 0,61 or
$P(\text{Female}) = \frac{122}{200} = 0,61$	200
$P(\text{Pass}) = \frac{118}{200} = 0,59$	$P(Pass) = \frac{1}{200} = 0.59$
$P(\text{Female and Pass}) = \frac{72}{200} = 0,36$	✓ P (Female and Pass) = 0,36
$P(\text{Female}) \times P(\text{Pass}) = 0.61 \times 0.59$	
= 0,36 (0,3599)	✓ $P(\text{Female}) \times P(\text{Pass}) = 0,36$
$\therefore P(\text{Female}) \times P(\text{Pass}) = P(\text{Female and Pass})$. (ach alugion
Passing the competency test is independent of gender.	• conclusion (4)
	(T) [6]
	[[V]

3.1	Histogram showing th	e frequency of the li	fespan of a television 7 1	n (years)	 ✓ intervals ✓ 3 bars correct ✓ 6 bars correct (3) Note If the candidate draws a bar graph, award max 2 marks
3.2	4,95 5,65	6,35 7,05	7,75 8,45	2 0 9,15	
	Lifespan (in years)	Frequency	Midpoint 5.2		
	$4,95 \le x < 5,65$	2	5,5	Nota	
	$5,65 \le x < 6,35$	6	6	If candidate works	s out average (\overline{x}) of
	$6,35 \le x < 7,05$	18	6,7	midpoints, answer	r is 7,05 then 0 marks
	$7,05 \le x < 7,75$	17	7,4		
	$7,75 \le x < 8,45$	5	8,1		
	$8,45 \leq x < 9,15$	2	8,8		
	$\overline{x} = \frac{2 \times 5,3 + 6 \times 6 + 18}{50}$ $= \frac{351,1}{50}$ $= 7,02 \text{ years}$ $(\overline{x} = 7,022)$	$\frac{3 \times 6,7 + 17 \times 7}{50}$,4 + 5 × 8,1 + 2	2 × 8,8	 ✓ frequencies × midpoints ✓ 50 ✓ answer (3)
3.3	The required area is 98	3% to the right	of some value	e. This value is at	
	2 standard deviations of	on the left of th	ne mean.		$\checkmark \overline{x} - 2\sigma$
	$\overline{x} - 2\sigma$				✓ 7,02 – 2(0,76)
	= 5,5 years				✓ answer (3)

3.4	They can issue a 5-year guarantee.	✓ Issue the 5-year
	The average lifespan of a set is 7,02 years - which is in excess of 5	guarantee
	years. 98% of the sets lasted for more than 5,5 years.	✓ reason
	Very few sets have lasted less than 5 years. The number of sets of this	(2)
	brand that will be returned should be minimal if a 5-year guarantee is	
	issued.	
	Afrikaans	
	Hullekan 'n 5 jaar-waarborguitreik.	√kan 'n 5 jaar-
	Die gemiddelde lewens duur van 'n televisiestel is 7,02 jaar -wat	waarborg uitreik
	5 jaar oorskry. 98% van die stelle het langer as 5,5 jaargehou.	√rede
	'n Klein aantal stelle het vir minder as 5 jaar gehou. Die aantal stele	(2)
	wat terug geneem sal moet word sal minimal wees indien 'n 5 jaar-	
	waarborg uitgereik word.	[11]

4.2.1	P(Rainy, Cycle)		
	$= \frac{3}{7} \times \frac{1}{9}$ = $\frac{1}{21}$ OR P(Rainy, Cycle) = 0,428×0,1111 = 0,04761904762 $\approx 0,05$ or 4,76%	Note: If $\frac{3}{7} + \frac{1}{9}$ then 0 marks	✓ $\frac{3}{7} \times \frac{1}{9}$ ✓ answerin any form (must be from multiplication) (2)
4.2.2	P(Train) $=\frac{4}{7} \times 0.1 + \frac{3}{7} \times \frac{1}{3}$ $= \frac{4}{7} \times 0.1 + \frac{3}{7} \times \frac{1}{3}$ $= 0.05714 + 0.1$ $= \frac{1}{5}$ $= 0.2$ $= 0.2$ $= 20\%$ $= 0.2$ $= 20\%$	428	✓ $\frac{4}{7}$ × 0,1 and $\frac{3}{7}$ × $\frac{1}{3}$ ✓ addition ✓ answer (in any form) (3)
4.3	P(Drive) = $\frac{4}{7} \times 0.2 + \frac{3}{7} \times \frac{5}{9}$ = $\frac{37}{105}$ = 0,35238 Vusi drives for $\frac{37}{105} \times 245 = 87$ days Accept: 86 days OR P(Drive) = $\frac{4}{7} \times 0.2 \times 245 + \frac{3}{7} \times \frac{5}{9} \times 245$ = 28+58,333 = 87 days (86,333) Accept: 86 days	(86,333)	$\checkmark \frac{4}{7} \times 0,2 \text{ and } \frac{3}{7} \times \frac{5}{9}$ $\checkmark \text{ addition}$ $\checkmark \frac{37}{105}$ $\checkmark \text{ answer}$ (4) $\checkmark \frac{4}{7} \times 0,2 \text{ and } \frac{3}{7} \times \frac{5}{9}$ $\checkmark \text{ addition}$ $\checkmark 28 + 58,333$ $\checkmark \text{ answer}$ (4) [14]

5.1.1	Number of PIN codes	(1.0	
	$= 10 \times 10 \times 10 \times 10 \times 10$	✓ 10	
	$= 10^{-100}$	✓ answer	(2)
	$= 100\ 000$		(2)
5.1.2	Number of PIN codes		
- · ·	$=10 \times 9 \times 8 \times 7 \times 6$	\checkmark multiplication	
	= 30 240	✓ answer	
			(2)
	OR		
	Number of PIN codes		
	$=\frac{10!}{10!}$	$\checkmark \frac{10!}{10!}$	
	5!	5!	
	$= 30\ 240$	✓ answer	
			(2)
5.2	Number of PINs that DO NOT contain 9s	()	
	$=9\times9\times9\times9\times9\times9$	✓ 9 (50.040	
	= 59 049	▼ 59 049	
	P(at least one 0)		
	$= 1 - P(n_0 - q_s)$	59049	
	50040	$\vee 1 - \frac{1}{100000}$	
	$=1-\frac{39049}{100000}$	✓ answer	
	100000		(4)
	= 0,41		. ,
	OR		
	Number of PINs that DO NOT contain 9s	v 0	
	$=9 \times 9 \times 9 \times 9 \times 9$	✓ 59 049	
	= 59 049		
	Number of PINs that contain AT LEAST one 9	✓ 40951	
	$= 100\ 000 - 59\ 049$		
	= 40.951		
	P(at least one 9)		
	40951		
	$=\frac{1}{100000}$		
	= 0.41		
		✓ answer	
			(4) [0]
		1	[ð]

7.2	$\frac{\text{VP}}{\text{PR}} = \frac{\text{VT}}{\text{TK}} (\text{PT} \parallel \text{RK}; \text{Prop Th})$ $\frac{2x - 10}{9} = \frac{4}{6}$	$✓ \frac{VP}{PR} = \frac{VT}{TK}$ ✓ (PT RK; Prop Th) ✓ substitution	
	2x - 10 = 6 $2x = 16$ $x = 8$ OR	✓ answer	(4)
	$\frac{\text{VP}}{\text{VR}} = \frac{\text{VT}}{\text{VK}} \qquad (\text{PT} \parallel \text{RK}; \text{Prop Th})$ $\frac{2x - 10}{2x - 1} = \frac{4}{10}$	✓ $\frac{VP}{VR} = \frac{VT}{VK}$ ✓ (PT RK; Prop Th) ✓ substitution	
	12x = 96 $x = 8$	✓ answer	(4) [11]

equal to the angle subtended by the chord in the alternate	✓ answer (1)
segment.	(1)
M Q 29° 29° 117° 117° 117° 117° 75° c b 76° 41° 34° 105° d d d T	U
	$\checkmark a = 29^{\circ}$
W	✓ $tan cn. tnm$ ✓ $OPR - 34^\circ$
$a = 29^{\circ}$ (tan ch.thm)	✓ QI K = 54 ✓ ∠s in same seg ✓ $c = 41^{\circ}$
$\hat{QPR} = 34^{\circ}$ ($\angle s \text{ in same seg}$)	$\mathbf{v} b = 76^{\circ}$ $\mathbf{v} \hat{\mathbf{Q}}_1 = 76^{\circ}$
$c = 41^{\circ}$	$\checkmark d = 105^{\circ}$
$b = 76^{\circ}$ (adj \angle s on str. line)	(9)
$\hat{Q}_1 = 76^\circ$ (\angle s in same seg)	
$d = 105^{\circ}$ (ext \angle cyclic quad)	$\checkmark a = 29^{\circ}$
$OR a = 29^{\circ} $ (tan ch. thm)	✓ tan ch. thm ✓ $\hat{T}_1 = c$ ✓ tan ch. thm ✓ $c + 34^\circ = 75^\circ$
$\hat{\mathbf{T}}_1 = c$ (tan ch. thm)	✓ tan ch. thm
$c + 34^{\circ} = 75^{\circ}$ (tan ch. thm) $c = 41^{\circ}$	$\checkmark c = 41^{\circ}$ $\checkmark b = 76^{\circ}$ $\checkmark d = 105^{\circ}$
$b = 76^{\circ}$ (adj∠s on str. line)	(9)
$d = 105^{\circ}$ (adj \angle s on str. line)	
OR An alternative solution for calculating d: $\hat{Q}_1 = R\hat{P}T = 76^\circ$ ($\angle s$ in same seg) $d + R\hat{T}Q = P\hat{Q}T + Q\hat{P}R + R\hat{P}T$ (ext $\angle \Delta$) $d + 34^\circ = 29^\circ + 34^\circ + 76^\circ$ $d = 105^\circ$	[10]
	equal to the angle subtended by the chord in the alternate segment. M Q ¹ / _{76°} $\frac{1}{4l^6} \frac{1}{29°}$ M Q ² / _{29°} $\frac{1}{176°} \frac{1}{4l^6} \frac{1}{29°}$ W $a = 29°$ (tan ch.thm) Q ^P R = 34° (\angle s in same seg) $c = 41°$ $b = 76°$ (adj \angle s on str. line) Q ¹ / ₁ = 76° (\angle s in same seg) $d = 105°$ (ext \angle cyclic quad) OR $a = 29°$ (tan ch. thm) $\hat{T}_1 = c$ (tan ch. thm) $c = 34° = 75°$ (tan ch. thm) $c = 41°$ $b = 76°$ (adj \angle s on str. line) $d = 105°$ (adj \angle s on str. line)

	C x $360^{\circ} - 2x$ $2^{\circ} - x^{2}$ 1 $3^{\circ} - x^{2}$ 1 $1^{\circ} - x^{2}$	
9.1	$\hat{AOB} = 2x$ (\angle circ centre = 2 \angle circumference) $\hat{T} = 180^\circ - 2x$ (opp \angle cyclic quad suppl)	✓ $A\hat{O}B = 2x$ ✓ ∠circ centre = 2 ∠ circumference ✓ opp∠ cyclic quad suppl
9.2	$ \begin{array}{ccc} \hat{CAT} = x & (\angle \operatorname{sum} \Delta) \\ \hat{K}_1 = x & (\operatorname{ext} \angle \operatorname{cyclic} \operatorname{quad}) \\ \hat{\pi} = x & \hat{\pi} \end{array} $	(3) $\checkmark C \hat{A} T = x$ $\checkmark \angle sum \Delta$ $\checkmark \hat{K} = x$
	$CAT = K_1$ BK AC (corresponding $\angle s =$)	✓ $\mathbf{x}_1 = \mathbf{x}$ ✓ $\mathbf{ext} \angle \mathbf{cyclic}$ quad ✓ corresponding $\angle \mathbf{s} =$ (5)
	$\hat{\mathbf{K}}_{1} = \hat{\mathbf{C}} = x (\text{ext} \angle \text{ cyclic quad})$ $\hat{\mathbf{B}}_{4} = x (\angle \text{ sum } \Delta)$ $\hat{\mathbf{B}}_{4} = \hat{\mathbf{C}} = x$	$\checkmark \hat{\mathbf{K}}_1 = \hat{\mathbf{C}} = x$ $\checkmark \text{ext} \angle \text{cyclic quad}$ $\checkmark \hat{\mathbf{B}}_4 = x$ $\checkmark \angle \text{sum } \Delta$
	$\mathbf{B}\mathbf{K} \parallel \mathbf{C}\mathbf{A} \qquad (\text{corresponding } \angle \mathbf{s} =)$ $\mathbf{O}\mathbf{R}$	✓ corresponding ∠s = (5)
	$CÂT = x$ $(\angle sum \Delta)$ $BKA = 180^\circ - x$ $(opp\angle cyclic quad)$ $CÂT + BKA = 180^\circ$ $BK \parallel AC$ $Coint\angle s supp$	✓ CAT = x ✓ $\angle \text{ sum } \Delta$ ✓ BKA = 180° – x ✓ opp \angle cyclic quad ✓ co-int \angle s supp
		(5)

9.3	In $\triangle BKT$ and $\triangle CAT$	
	1. $C\hat{A}T = \hat{K}_1$ (= x)	$\checkmark \hat{CAT} = \hat{K}_1$
	2. \hat{T} is common	$\checkmark \hat{T}$ is common
	3. $\hat{ACT} = \hat{B}_4$ ($\angle sum \Delta$)	
	$\Delta BKT \parallel \Delta CAT (\angle \angle \angle)$	\checkmark \angle \angle \angle (2)
		(3)
9.4	$\frac{AC}{AC} - \frac{AT}{AC}$ (III As)	$\sqrt{AC} - \frac{AT}{T}$
	$KB KT$ (III ΔS)	KB KT
	AC_7	✓ ∆s
	$\frac{1}{\text{KB}} = \frac{1}{2}$	✓ answer
		(3)
		[14]

10.1	DC = 13x	\checkmark CD = 13 x	(1)
10.2	$OD = \frac{13}{2}x$	\checkmark OD = $\frac{13}{2}x$	(-)
	$OM = \frac{5}{2}x$	✓ answer	(2)
10.3	BO = OD (radii) AM = MB = 12 units (line from circ cent \perp ch)	\checkmark MB = 12	
	$12^{2} + \left(\frac{5}{2}x\right)^{2} = \left(\frac{13}{2}x\right)^{2} $ (Pythagoras)	✓ $12^2 + \left(\frac{5}{2}x\right)^2 = \left(\frac{13}{2}x\right)^2$	
	$144 + \frac{25x^2}{4} = \frac{169x^2}{4}$	or $12^{2} + 6,25x^{2} = 42,25x^{2}$ or $12^{2} + \frac{25}{4}x^{2} = \frac{169}{4}x^{2}$	
	$144 = \frac{144x^2}{4}$		
	$x^{2} = 4$ $x = \pm 2$ $x = 2$ $(x > 0)$	✓ answer	
	The radius $=\frac{13}{2}(2)$		
	= 13 units.	✓ answer	(4) [7]