

basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 16 pages.

NOTE:

- If a candidate answered a question TWICE, mark the FIRST attempt ONLY.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed out question.
- Consistent accuracy applies in ALL aspects of the memorandum.

QUESTION 1

QUESTION 2

2.1	Yes. The events Pass and Fail are mutually exclusive. It is not possible for pass and fail to take place at the same time. There is no intersection between the two sets. $\begin{equation*} \text { P(Pass and Fail) }=0 \tag{2} \end{equation*}$ Note: OR If a candidate answers 'No' P (Pass) $=0,59$ then award 0 marks $\mathrm{P}($ Fail $)=0,41$ P(Pass) + P(Fail) $=0,59+0,41$ $\begin{equation*} =1 \tag{2} \end{equation*}$ $\mathrm{P}($ Pass and Fail $)=0 /$ No intersection of the sets The events Pass and Fail are mutually exclusive. Afrikaans Ja. Die gebeurtenisse Slaag en Druip is onderling uitsluitend. Dit is nie moontlik dat slaag en druip gelyktydig plaasvind nie. $\mathrm{P}($ Slaag en Druip $)=0$	\checkmark Yes $\checkmark \mathrm{P}$ (Pass and Fail) $=0 /$ no intersection between the sets. \checkmark Yes $\checkmark \mathrm{P}($ Pass and Fail $)=0 /$ No intersection between the sets \checkmark Ja $\checkmark \mathrm{P}$ (Slaag en Druip) $=0 /$ geen snyding
2.2	PASS FAIL TOTAL Males 46 32 78 Females 72 50 122 Total 118 82 200$\begin{aligned} & P(\text { Male })=\frac{78}{200}=0,39 \begin{array}{l} \text { Note: } \\ \text { If a candidate } \\ \text { then award } 0 \mathrm{n} \end{array} \\ & P(\text { Pass })=\frac{118}{200}=0,59 \begin{aligned} P(\text { Male and Pass }) & =\frac{46}{200}=0,23 \\ P(\text { Male }) \times P(\text { Pass }) & =0,39 \times 0,59 \\ & =0,23 \end{aligned} \\ & \begin{aligned} (0,2301) \end{aligned} \end{aligned}$ $\therefore P$ (Male) $\times P$ (Pass) $=P$ (Male and Pass) \therefore Passing the competency test is independent of gender.	$\begin{aligned} & \checkmark P(\text { Male })=\frac{78}{200}=0,39 \text { or } \\ & P(\text { Pass })=\frac{118}{200}=0,59 \\ & \checkmark P(\text { Male and Pass })=0,23 \\ & \checkmark P(\text { Male }) \times P(\text { Pass })=0,23 \end{aligned}$

QUESTION 3

3.4	They can issue a 5-year guarantee. The average lifespan of a set is 7,02 years - which is in excess of 5 years. 98\% of the sets lasted for more than 5,5 years. Very few sets have lasted less than 5 years. The number of sets of this brand that will be returnedshould be minimal if a 5-year guarantee is issued. Afrikaans Hullekan ' $n 5$ jaar-waarborguitreik. Die gemiddelde lewens duur van 'n televisiestel is 7,02 jaar -wat 5 jaar oorskry. 98\% van die stelle het langer as 5,5jaargehou. 'n Klein aantal stelle het vir minder as 5 jaar gehou. Die aantal stele wat terug geneem sal moet word sal minimal wees indien 'n 5 jaar- waarborg uitgereik word.	\checkmark Issuatee 5-year \checkmark reason
\checkmark kan ' $n 5$ jaar- waarborg uitreik \checkmark rede		

QUESTION 4

4.1	OR	\checkmark Sunny branch \checkmark Rainybranch \checkmark cycle, drive, train branches on both weather types \checkmark probabilities listed \checkmark outcomes listed

4.2.1	$\begin{array}{l\|l} \hline \text { P(Rainy, Cycle) } \\ =\frac{3}{7} \times \frac{1}{9} & \\ =\frac{1}{21} & \begin{array}{l} \text { Note: } \\ \text { If } \frac{3}{7}+\frac{1}{9} \end{array} \text { then } 0 \text { marks } \end{array} \quad \begin{aligned} & \text { OR } \\ & \text { P(Rainy, Cycle) } \\ & =0,428 \ldots \times 0,1111 \ldots \\ & =0,04761904762 \\ & \approx 0,05 \\ & \text { or } 4,76 \% \end{aligned}$	$\checkmark \frac{3}{7} \times \frac{1}{9}$ answerin any form (must be from multiplication)
4.2.2	$$	$\begin{aligned} & \checkmark \frac{4}{7} \times 0,1 \text { and } \frac{3}{7} \times \frac{1}{3} \\ & \checkmark \text { addition } \\ & \checkmark \text { answer } \\ & \quad \text { (in any form) } \end{aligned}$
4.3	$\begin{align*} P(\text { Drive }) & =\frac{4}{7} \times 0,2+\frac{3}{7} \times \frac{5}{9} \\ = & \frac{37}{105} \\ = & 0,35238 \ldots \tag{86,333...} \end{align*}$ Vusi drives for $\frac{37}{105} \times 245=87$ days Accept: 86 days OR $\begin{align*} & P(\text { Drive })=\frac{4}{7} \times 0,2 \times 245+\frac{3}{7} \times \frac{5}{9} \times 245 \\ & =28+58,333 \end{align*}$ Accept: 86 days	$\checkmark \frac{4}{7} \times 0,2$ and $\frac{3}{7} \times \frac{5}{9}$ \checkmark addition $\checkmark \frac{37}{105}$ \checkmark answer (4) $\checkmark \frac{4}{7} \times 0,2$ and $\frac{3}{7} \times \frac{5}{9}$ \checkmark addition $\checkmark 28+58,333$ \checkmark answer (4)

QUESTION 5

5.1.1	Number of PIN codes $\begin{aligned} & =10 \times 10 \times 10 \times 10 \times 10 \\ & =10^{5} \\ & =100000 \end{aligned}$	$\checkmark 10$ \checkmark answer (2)
5.1.2	Number of PIN codes $\begin{aligned} & =10 \times 9 \times 8 \times 7 \times 6 \\ & =30240 \end{aligned}$ OR Number of PIN codes $\begin{aligned} & =\frac{10!}{5!} \\ & =30240 \end{aligned}$	\checkmark multiplication \checkmark answer (2) $\checkmark \frac{10!}{5!}$ \checkmark answer
5.2	Number of PINs that DO NOT contain 9s $\begin{aligned} & =9 \times 9 \times 9 \times 9 \times 9 \\ & =59049 \end{aligned}$ $\begin{aligned} & \mathrm{P}(\text { at least one } 9) \\ & =1-\mathrm{P}(\text { no } 9 \mathrm{~s}) \\ & =1-\frac{59049}{100000} \\ & =0,41 \end{aligned}$ OR Number of PINs that DO NOT contain 9s $\begin{aligned} & =9 \times 9 \times 9 \times 9 \times 9 \\ & =59049 \end{aligned}$ Number of PINs that contain AT LEAST one 9 $\begin{aligned} & =100000-59049 \\ & =40951 \end{aligned}$ P (at least one 9) $\begin{aligned} & =\frac{40951}{100000} \\ & =0,41 \end{aligned}$	$\checkmark 9$ $\checkmark 59049$ $\checkmark 1-\frac{59049}{100000}$ \checkmark answer (4) $\checkmark 9$ $\checkmark 59049$ $\checkmark 40951$
		(4) [8]

QUESTION 6

6.1	$T_{k+1}=2 T_{k}+3 \text { where } T_{1}=1, k \geq 1$ OR $T_{k+1}=T_{k}+2^{k+1} \text { where } T_{1}=1, k \geq 1$ OR $T_{k+2}=2\left(T_{k+1}-T_{k}\right)+T_{k+1} \text { where } T_{1}=1, T_{2}=5, k \geq 1$	$\begin{align*} & T_{k+1}=2 T_{k}+3 \\ & \checkmark T_{1}=1 \\ & \checkmark k \geq 1 \tag{4} \end{align*}$ $\checkmark \checkmark$ $T_{k+1}=T_{k}+2^{k+1}$ $\checkmark T_{1}=1$ $\begin{equation*} \checkmark k \geq 1 \tag{4} \end{equation*}$ $\begin{aligned} & T_{k+2}=2\left(T_{k+1}-T_{k}\right)+T_{k+1} \\ & \checkmark T_{1}=1 T_{2}=5 \\ & \checkmark k \geq 1 \end{aligned}$
		(4)
6.2	The next term of the sequence is $\begin{aligned} & 44+2^{5}+5 \\ & =81 \end{aligned}$ The next term of the sequence is 79 .	$\checkmark \checkmark$ answer $\checkmark \checkmark$ answer
	Note: This sequence can be represented by the following recursive formula: $T_{n+1}=T_{n}+\frac{1}{3} n^{3}-n^{2}+\frac{11}{3} n \quad$ where $T_{1}=4 \quad$ and $n \geq 1$	(2) [6]

QUESTION 7

7.1	Draw a point P on FG such that $\mathrm{FP}=\mathrm{LM}$ and a point Q on FH such that $\mathrm{FQ}=\mathrm{LN}$. Note: No construction In $\triangle \mathrm{FPQ}$ and $\triangle \mathrm{LMN}$	\checkmark construction \checkmark All three statements must be given $\checkmark \triangle \mathrm{FPQ} \equiv \triangle \mathrm{LMN}(\mathrm{SAS})$ $\checkmark F \hat{P Q}=\mathrm{LM} N$ \checkmark FPQ $=\mathrm{FG} \mathrm{H}$ $\checkmark \mathrm{PQ} \\| \mathrm{GH}$ $\checkmark \frac{F P}{F G}=\frac{F Q}{F H}$

QUESTION 8

8.1	... equal to the angle subtended by the chord in the alternate segment.	\checkmark answer (1)
8.2		$\checkmark a=29^{\circ}$ \checkmark tan ch. thm $\checkmark \mathrm{QPR}=34^{\circ}$ $\checkmark \angle$ s in same seg $\checkmark c=41^{\circ}$ $\checkmark b=76^{\circ}$ $\checkmark \hat{\mathrm{Q}}_{1}=76^{\circ}$ $\checkmark d=105^{\circ}$ \checkmark ext \angle cyclic quad $\checkmark a=29^{\circ}$ \checkmark tan ch. thm $\checkmark \hat{\mathrm{T}}_{1}=c$ \checkmark tan ch. thm $\checkmark c+34^{\circ}=75^{\circ}$ \checkmark tan ch. thm $\checkmark c=41^{\circ}$ $\checkmark b=76^{\circ}$ $\checkmark d=105^{\circ}$ (9)

QUESTION 9

9.1	AÔB $=2 x \quad(\angle$ circ centre $=2 \angle$ circumference $)$ $\hat{\mathrm{T}}=180^{\circ}-2 x \quad(\mathrm{opp} \angle$ cyclic quad suppl)	\checkmark AÔB $=2 x$ $\checkmark \angle$ circ centre $=2 \angle$ circumference \checkmark opp \angle cyclic quad suppl		
		(3)		
9.2	CÂT $=x \quad(\angle \operatorname{sum} \Delta)$	\checkmark CÂT $=x$		
	$\hat{\mathrm{K}}_{1}=x \quad(\mathrm{ext} \angle$ cyclic quad)	$\checkmark \angle \operatorname{sum} \Delta$		
	$\hat{C A T}=\hat{\mathrm{K}}_{1}$	$\checkmark \hat{\mathrm{K}}_{1}=x$		
	$\mathrm{BK} \\| \mathrm{AC} \quad$ (corresponding $\angle \mathrm{s}=$)	\checkmark ext \angle cyclic quad		
		\checkmark corresponding $\angle \mathrm{s}=$		
	OR	(5)		
	$\hat{\mathrm{K}}_{1}=\hat{\mathrm{C}}=x \quad(\mathrm{ext} \angle$ cyclic quad)	$\checkmark \hat{\mathrm{K}}_{1}=\hat{\mathrm{C}}=x$		
	$\hat{\mathrm{B}}_{4}=x \quad(\angle \operatorname{sum} \Delta)$	\checkmark ext \angle cyclic quad		
	$\hat{\mathrm{B}}_{4}=\hat{\mathrm{C}}=x$	$\checkmark \hat{\mathrm{B}}_{4}=x$		
	BK \\|	CA \quad (corresponding $\angle \mathrm{s}=$)	$\checkmark \angle \operatorname{sum} \Delta$	
		\checkmark corresponding $\angle \mathrm{s}=$		
	OR	\checkmark CÂT $=x$		
	CAT $=x \quad(\angle \operatorname{sum} \Delta)$	$\checkmark \angle \operatorname{sum} \Delta$		
	BKA $=180^{\circ}-x \quad($ opp \angle cyclic quad)	\checkmark BKA $=180^{\circ}-x$		
	$\mathrm{CÂT}+\mathrm{BKA}=180^{\circ}$	\checkmark opp \angle cyclic quad		
	BK \\| AC (coint $\angle \mathrm{s}$ supp)			
		(5)		

9.3	In $\triangle \mathrm{BKT}$ and $\triangle \mathrm{CAT}$ 1. $\mathrm{CA} \mathrm{A}=\hat{\mathrm{K}}_{1} \quad(=x)$ 2. \hat{T} is common 3. $\mathrm{AC} \mathrm{T}=\hat{\mathrm{B}}_{4} \quad(\angle \operatorname{sum} \Delta)$ $\triangle \mathrm{BKT}\|\|\mid \triangle \mathrm{CAT}(\angle \angle \angle)$	$\checkmark \mathrm{CAT}=\hat{\mathrm{K}}_{1}$ $\checkmark \hat{T}$ is common $\checkmark \angle \angle \angle$	(3)				
9.4	$\begin{aligned} & \frac{\mathrm{AC}}{\mathrm{~KB}}=\frac{\mathrm{AT}}{\mathrm{KT}} \quad(\\| \\| \Delta \mathrm{s}) \\ & \frac{\mathrm{AC}}{\mathrm{~KB}}=\frac{7}{2} \end{aligned}$	$\begin{aligned} & \checkmark \frac{\mathrm{AC}}{\mathrm{~KB}}=\frac{\mathrm{AT}}{\mathrm{KT}} \\ & \checkmark\\|\\| \Delta \mathrm{s} \\ & \checkmark \text { answer } \end{aligned}$					
			$\begin{array}{r} \text { (3) } \\ {[14]} \end{array}$				

QUESTION 10

10.1	DC $=13 x$	$\checkmark \mathrm{CD}=13 x$	
			(1)
10.2	$\begin{aligned} & \mathrm{OD}=\frac{13}{2} x \\ & \mathrm{OM}=\frac{5}{2} x \end{aligned}$	$\checkmark \mathrm{OD}=\frac{13}{2} x$ \checkmark answer	
10.3	$\begin{aligned} & \mathrm{BO}=\mathrm{OD} \quad \text { (radii) } \\ & \mathrm{AM}=\mathrm{MB}=12 \text { units (line from circ cent } \perp \mathrm{ch} \text {) } \\ & \begin{aligned} & 12^{2}+\left(\frac{5}{2} x\right)^{2}=\left(\frac{13}{2} x\right)^{2} \quad \quad \text { (Pythagoras) } \\ & 144+\frac{25 x^{2}}{4}=\frac{169 x^{2}}{4} \\ & 144=\frac{144 x^{2}}{4} \\ & x^{2}=4 \\ & x= \pm 2 \\ & x=2 \\ & \text { The radius }=\frac{13}{2}(2) \\ &=13 \end{aligned} \\ & \begin{aligned} \\ =1 \end{aligned} \\ & \text { units. } \end{aligned}$	$\begin{aligned} & \checkmark \mathrm{MB}=12 \\ & \checkmark 12^{2}+\left(\frac{5}{2} x\right)^{2}=\left(\frac{13}{2} x\right)^{2} \end{aligned}$ or $12^{2}+6,25 x^{2}=42,25 x^{2}$ or $12^{2}+\frac{25}{4} x^{2}=\frac{169}{4} x^{2}$ \checkmark answer \checkmark answer	
			(4) [7]

