

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 14 pages.

Please turn over

NSC – Memorandum

NOTE:

- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

1.1	$T_{k+1} = T_k - 2; \ k \ge 1; \ T_1 = 12$			
	$T_1 = 12$			
	$T_2 = 12 - 2 = 10$		√ 10	
	$T_3 = 10 - 2 = 8$		✓ 8 ¹⁰	
	$T_4 = 8 - 2 = 6$		√ 6	$\langle \mathbf{O} \rangle$
1.2	12 + 10 + 8 + 6 + 4 + 2 + 0 + (-2) + (-4) - 0	+ (- 6) + (- 8) + (- 10) + (- 12)	✓✓ expansion	(3)
	= 0		,	
	∴13 terms	Note:	✓ 13 terms	(2)
		12 + 10 + 8 + 6 + 4 + 2 + 0		(3)
		then 1/3 marks		
		Note:		
		Answer only: FULL marks		
	OR			
	There are 6 positive terms before the 7th term, which is 0. We need 6		$\checkmark T_7 = 0$	
	negative terms of equal value to the positive	e terms so that the sum is zero	(10)	
	6 positive terms $+ 1$ zero term $+ 6$ negative	terms	\checkmark 12 terms	
	= 13 terms		✓ 13 terms	
	OR			(3)
	$\frac{n}{n}[2(12) + (n-1)(-2)] = 0$			
	$2^{[2(12)+(n-1)(-2)]=0}$		\checkmark substitution in	nto
	$\frac{n}{2}[24+2-2n]=0$		formula	III
	$\frac{-1}{2}[26-2n]=0$		$\checkmark \frac{n}{2}[26-2n] =$	0
	$13n - n^2 = 0$		~	
	n(13-n) = 0		12 torms	
	$n \neq 0$ or $n = 13$		• 13 (211118	(3)
				[6]

2.1	42 - 28 = 14	✓ answer
2.2	Approximately 88 kg	(1) ✓ answer (1)
2.3	15 learners in the sample have a weight of less than 80 kg. One would expect $\frac{15}{50} \times 250 = 75$ learners in the grade to have a weight of less than 80 kg. OR	 ✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)
	 15 learners in the sample have a weight of less than 80 kg. One would expect 15×5 = 75 learners in the grade to have a weight of less than 80 kg. NOTE: Accept 14/50 × 250 = 70 Answer as percentage: 1/2 marks Answer only: 2/2 marks 	 ✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)
2.4	This sampling method is biased towards those who arrive early on a Monday morning. In this way all the learners in the Grade do not have the same chance of being selected for the sample.	✓ sensible explanation of random sample (1) [5]

3.1	For mutually exclusive events		
	P(A or B) = P(A) + P(B)	Note:	
	0,7 = 0,4 + k	Answer only: FULL marks	$\checkmark 0,7 = 0,4 + k$
	k = 0.3		✓ answer
	$\kappa = 0, 5$		(2)
	NOTE:		
	If the candidate writes down $k = 1$.	-0.7 = 0.3: 0/2 marks	
3.2	For independent events		
	P(A and B) = P(A).P(B)		\checkmark P(A and B) = P(A).P(B)
	= 0,4k		$\checkmark 0,4k$
	P(A or B) = P(A) + P(B) - P(A and B)		
	0,7 = 0,4 + k - 0,4k	••	✓ $0,7 = 0,4 + k - 0,4k$
	0,3 = 0,6k	nswer only: 1/4 marks	
	k = 0,5		✓ answer
	• V	Vrong formula: 0/4 marks	(4)
	0,7 = 0,4 + K - 0,4K		••• • 0,7 = 0,4 + κ - 0,4 κ
	0,5 = 0,0K		1 anguar
	$\kappa = 0, 5$		• answer
			(4)
			[0]

4.1	21 minutes is 1 standard deviation from the mean		✓ 1 standard	
	\therefore 34% of the pizzas are delivered between 21 and 24 minutes		deviation	
	Note: Answer only: FULL marks		✓ 34%	(2)
4.2	15 minutes is 3 standard deviations to the 27 minutes is 1 standard deviation to the 84% of the pizzas are delivered between	e left of the mean $\therefore 50\%$ e right of the mean $\therefore 34\%$ n 15 and 27 minutes	 ✓ 50% ✓ 34% ✓ 84% 	(3)
	OR 2% + 14% + 34% + 34% = 84%	Note: Answer only: FULL marks	 ✓ 50% ✓ 34% ✓ 84% 	(3)
4.3	The required 2% is the area found to the right hand side of the mean. Maximum for delivery should be $24 + 2(3)$ = 30 minutes	e right of 2 standard deviations on the Note: Answer only: FULL marks	 ✓ 2 standard deviations ✓ 24 + 2(3) ✓ 30 	(3) [8]

5.1	Number of unique codes			
	$=7 \times 7 \times 7$	Note:	\checkmark 7 × 7 × 7	
	$= 7^{3}$	Answer only: FULL marks	✓ answer	
	= 343			(2)
5.2	Number of unique codes without rep	petition		
	$= 7 \times 6 \times 5$		\checkmark 7 × 6 × 5	
	= 210	Note:	✓ answer	
	OB	Answer only: FULL marks		(2)
			$\checkmark \frac{7!}{}$	
			4!	
	4!		✓ answer	
	= 210			(2)
5.3	Number of codes with repetition that	t are greater than 300 and divisible by 5	$\checkmark 4 \times 7 \times 2$	
	$= 4 \times 7 \times 2 - 1$	Note:	✓ -1	
	= 55	• No CA marking for the answer.	✓ answer	
	OB	• Answer only 3/3 marks		(3)
	OR East a 100 sumbars there are 14 sum	hour divisible by 5	✓ 14× 4	
	For a 100 numbers there are 14 num $14 \times 4 = 56$	Ders divisible by 5	✓ - 1	
	$14 \times 4 = 30$		✓ answer	
	30 - 1 = 33			(3)
				[7]

 $=\frac{53}{173}$

= 0,31

OR 30,64%

6.3

2x + 20 + 11 + 16 = 232 - 173

P(at least two complaints)

 $=\frac{11+20+6+16}{1}$

173

2x + 47 = 59

2x = 12

x = 6

(0,30635838...)

6.1		\checkmark 79 – x
	M $79-x$ 20 $19-x$ 11 16 $40-x$ 0	$\checkmark 20$ $\checkmark 19 - x$ $\checkmark 11$ $\checkmark 16$ $\checkmark 40 - x$
6.2	79 - x + 20 + x + 11 + 19 - x + 16 + 40 - x = 173	✓ addition
	185 - 2x = 173	✓ 173
	x = 6	✓ answer
	OR 232 complaints and 173 people in total 94 complaints from 47 people 138 complaints from remaining 126 people For the two to be equal 126 - x = 138 - 3x 2x = 12 x = 6	✓ $126 - x$ and $138 - 3x$ ✓ $126 - x = 138 - 3x$ ✓ answer
	OR $110+55+67=232$	

(6)

(3)

(3)

(3)

(3)

[12]

 \checkmark 2*x*+20+11+16 = 232-173

✓ 232

✓ 173

✓ answer

✓ answer

✓ 11+20+6+16

5 C. Mamarandi

Math	nematics/P3	7 NSC Marrowski	DBE/November 2011
7.2	$a = 40.97$ (40.9710) $b = -1.74$ (-1.736) $\hat{y} = 40.97 - 1.74x$ Note: • Penalise 1 mark f decimal place in o • Answer only: FU	NSC – Memorandum 08844) 394558) For incorrect rounding to ONE either 7.2 or 7.3 LL marks	$ \begin{array}{c} \checkmark \checkmark a \\ \checkmark b \\ \checkmark \text{ equation} \end{array} $ (4)
	If the candidate works $b = \frac{-204,2}{117,6}$ then 2 mat	the coefficients out manually that rks for <i>b</i> .	
7.3	r = -0,97 (-0,9699 NOTE: If the candidate then 1 mark.	$b=\frac{6,139218}{3,42928}r$ and not simple	ified √√ answer (2)
7.4	There is a strong negati and the units of electric OR	ve correlation between the noon tem ity used.	berature \checkmark strong \checkmark negative (2)
	As the noon temperatur decreases. OR	re increases, the units of electricity us	ed ✓✓ as noon temp increases & units decrease (2)
	As the noon temperatur increases.	re decreases, the units of electricity us	sed $\checkmark \checkmark$ as noon temp decreases & units increases (2)
7.5	$\hat{y} \approx 40,97 - 1,74(8)$ $\approx 27,05$ OR $\hat{y} \approx 27,0799 \approx 27,08$	 Note: Answer only: 2/2 marks Accept a range of 26,5 – 27,5 if least squares regression line is d and the answer is read off: 2/2 marks 	<pre>✓ substitution ✓ answer (2) [13] </pre>

Mathematics/P3

	NSC – Memorandum	
8.2.4	$\hat{\mathbf{P}}_1 = \hat{\mathbf{W}} \qquad (= 40^\circ)$	$\checkmark \hat{P}_1 = \hat{W}$
	WVPT is a cyclic quadrilateral $(ext \angle = int opp)$	✓ WVPT is a cyclic quadrilateral
	$\hat{\mathbf{V}}_1 = \hat{\mathbf{PTS}}$ (ext \angle cyclic quad)	✓ ext $∠$ = in opp
		✓ ext \angle cyclic quad (4)
		(4)
		✓ ∠s in semi circle
	$I_1 = 90^\circ$ ($\angle s \text{ in semi circle}$)	$\checkmark \hat{PTS} = 90^\circ + \hat{T}_2$
	$PTS = 90^{\circ} + T_2$	$\checkmark \hat{T}_2 = \hat{S}_1$
	$\hat{T}_2 = \hat{S}_1$ ($\angle s \text{ in same seg}$)	\checkmark /s in same seg
	$\hat{PTS} = 90^{\circ} + \hat{S}_1$	(4)
	$\hat{\mathbf{V}}_1 = 90^\circ + \hat{\mathbf{S}}_1 (\text{ext} \angle \Delta)$	
	$\hat{\mathbf{V}}_{1} = \mathbf{P}\hat{\mathbf{T}}\mathbf{S}$	
	OR	
	$\hat{P}_2 = 140^\circ$ ($\angle s \text{ on str line}$)	$\checkmark \hat{W} + \hat{P}_2 = 180^\circ$
	$\hat{\mathbf{W}} + \hat{\mathbf{P}}_2 = 180^{\circ}$	\checkmark WVPT is a cyclic quadrilateral
	WVPT is cyclic quad (opp ∠s suppl)	✓ opp ∠ suppl
	$\hat{\mathbf{V}}_1 = \hat{\mathbf{PTS}}$ (ext \angle cyclic quad)	✓ ext $∠$ cyclic quad (1)
		(4)
	$\mathbf{V}_1 = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{S}_1 (\text{ext} \angle \Delta)$	$\checkmark \hat{V}_1 = 90^\circ + \hat{S}_1$
	$V_1 = 90^\circ + S_1$	$\checkmark P\hat{T}S = 90^\circ + \hat{T}_2$
	$\hat{PTS} = 90^{\circ} + \hat{T}_2$	$\sqrt{\hat{T}_2 - \hat{S}_2}$
	But $\hat{T}_2 = \hat{S}_1$ ($\angle s$ in same seg)	\checkmark /s in same seq
	$\hat{\mathbf{V}}_{1} = \mathbf{P}\hat{\mathbf{T}}\mathbf{S}$	(4)
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	OR	
	In ΔPTS and ΔWVS	identification of triangles
	$P_1 = W \qquad (= 40^\circ)$	$\hat{\mathbf{p}} = \hat{\mathbf{W}}$
	\hat{S}_2 is common	\cdot $1_1 - \mathbf{v}\mathbf{v}$
	$\hat{\mathbf{V}}_1 = \hat{\mathbf{PTS}} \qquad (\angle \operatorname{sum} \Delta)$	• S_2 is common
		• \angle sum \triangle
		(4)
		[15]

9.	$\hat{C} = 90^{\circ}$	(∠s in semi circle)	$\checkmark \hat{C} = 90^{\circ}$	
	$\hat{OEA} = 90^{\circ}$	(corres ∠s; OD BC)	✓ $\hat{OEA} = 90^{\circ}$	
	AE = 8 cm	(line from circ cent \perp ch bis ch)	✓ line from circ	;
	OE = 6 cm	(Pythagoras)	cent \perp ch bis ch	
	ED = 10 - 6	0	\checkmark OE = 6 cm	
	=4 cm		\checkmark ED = 4 cm	
	OR Â			
	$C = 90^{\circ}$	$(\angle s \text{ in semi circle})$		
	$OEA = 90^{\circ}$	(corres $\angle s$; OD BC)	$\checkmark C = 90^{\circ}$	
	OE BC	(given)	\checkmark OEA = 90°	
	OA = OB	(rad11)	✓ midpoint	
	AE = EC = 8C	(midpoint theorem)	theorem $\sqrt{OE} = 6$ cm	
	OE = 0 CIII ED = 10 6	(Pythagoras)	\checkmark OE = 0 cm \checkmark ED = 4 cm	
	ED = 10 = 0 = 4 cm		• $ED = 4 Cm$	
	– + cm			
	OR			
	$\hat{C} = 90^{\circ}$	(∠s in semi circle)		
	$BC^2 = (20)^2 -$	$(16)^2$	$\checkmark \hat{C} = 90^{\circ}$	
	$BC^{2} = 144$		✓ BC = 12	
	BC = 12		✓ reason	
	$OE = \frac{1}{BC}$	(midpoint theorem)	$\checkmark OE = 6 \text{ cm}$	
	2		• $ED = 4 cm$	
	OE = 6 cm			[5]
	OD = 10cm			[5]
	ED = 10 - 6			
	– 4 CIII			
	OR			
	$\hat{C} = 90^{\circ}$	(∠s in semi circle)	$\checkmark \hat{C} = 90^{\circ}$	
	$BC^2 = (20)^2 -$	$(16)^2$	✓ BC = 12	
	$BC^2 = 144$		✓ reason	
	BC = 12			
	$OE = \frac{1}{2}BC$	(midpoint theorem)	$\checkmark OE = 6 cm$	
	OE = 6 cm		• $ED = 4 \text{ cm}$	
	ED = 4cm			[5]
				[9]

10.1	$\hat{A} = \hat{D}_4 = x (\tan \operatorname{ch} \operatorname{th})$ $\hat{E}_2 = x (\tan \operatorname{ch} \operatorname{th}) \mathbf{OR} \ (\angle \operatorname{s} \operatorname{in} \operatorname{same} \operatorname{seg})$ $\hat{D}_2 = \hat{A} = x (\operatorname{alt} \angle \operatorname{s}; \operatorname{CA} \parallel \operatorname{DF})$	$\checkmark \hat{A} = x$ $\checkmark \tan \operatorname{ch} \operatorname{th}$ $\checkmark \hat{E}_2 = x$
		✓ reason ✓ $\hat{D}_2 = x$ ✓ alt ∠s; CA DF (6)
10.2	In Δ BHD and Δ FED 1. $\hat{B}_2 = \hat{F}$ ($\angle s$ in same seg) 2. $\hat{D}_3 = \hat{D}_1$ (= chs subt = $\angle s$) Δ BHD Δ FED ($\angle \angle \angle$)	$\checkmark \hat{B}_2 = \hat{F}$ $\checkmark \angle s \text{ in same seg}$ $\checkmark \hat{D}_3 = \hat{D}_1$ $\checkmark = \text{chs subt} = \angle s$ $\checkmark \angle \angle \angle \qquad (5)$
10.3	$\frac{FE}{BH} = \frac{FD}{BD} (\Delta s)$ But FE = AB (given) $\frac{AB}{BH} = \frac{FD}{BD}$ AB.BD = FD.BH	$\checkmark \frac{FE}{BH} = \frac{FD}{BD}$ $\checkmark FE = AB$ (2) [13]

11.1	AF = FC	(diags of parallelogram bisect)	\checkmark AF = FC
	AE = ED	(Prop Th: FE CD) OR (Midpoint Theorem)	✓ reason
			(2)
11.2	$\frac{AC}{=}$	(given)	
	CP 2		
	$\frac{AD}{-} = \frac{1}{-}$	(given)	
	DQ 2		
	$\frac{AC}{AC} = \frac{AD}{AD}$		\checkmark ratios equal
	CP DQ		
	$CD \parallel PQ$	(converse proportionality theorem)	\checkmark CD PQ
	$\cdot PO \parallel FE$	(given)	prop th and conclusion
			(3)
	OR		
	$\frac{AC}{AP} = \frac{1}{3}$ $\frac{AD}{AQ} = \frac{1}{3}$ $\frac{AC}{AP} = \frac{AD}{AQ}$ $CD \parallel PQ$ $CD \parallel FE$ $\therefore PQ \parallel FE$ OR $AF = \frac{1}{3}$	(converse proportionality theorem) (given)	✓ ratios equal ✓ CD PQ ✓ reason: converse prop th and conclusion (3) ✓ $\frac{AF}{2} = \frac{1}{2}$
	$\overline{AP} = \overline{6}$		$\checkmark {AP} = {6}$
	$\frac{AE}{E} = \frac{1}{E}$		
	AQ ⁶		AF AE
	$\frac{AF}{AE} = \frac{AE}{AE}$		$\checkmark \frac{1}{AP} = \frac{1}{AO}$
	AP AQ		\checkmark conv prop theorem
	∴ PQ FE	(converse proportionality theorem)	

TOTAL: 100