This memorandum consists of 14 pages.
NOTE:
- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

QUESTION 1

1.1

\[T_{k+1} = T_k - 2; \quad k \geq 1; \quad T_1 = 12 \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td>12</td>
</tr>
<tr>
<td>(T_2)</td>
<td>10</td>
</tr>
<tr>
<td>(T_3)</td>
<td>8</td>
</tr>
<tr>
<td>(T_4)</td>
<td>6</td>
</tr>
</tbody>
</table>

\(\therefore 10\)
\(\therefore 8\)
\(\therefore 6\)

1.2

\[12 + 10 + 8 + 6 + 4 + 2 + 0 + (– 2) + (– 4) + (– 6) + (– 8) + (– 10) + (– 12) = 0 \]

\(\therefore\) 13 terms

OR

There are 6 positive terms before the 7th term, which is 0. We need 6 negative terms of equal value to the positive terms so that the sum is zero.

6 positive terms + 1 zero term + 6 negative terms
= 13 terms

OR

\[\frac{n}{2} [2(12) + (n - 1)(-2)] = 0 \]

\[\frac{n}{2} [24 + 2 - 2n] = 0 \]

\[\frac{n}{2} [26 - 2n] = 0 \]

\[13n - n^2 = 0 \]

\[n(13 - n) = 0 \]

\(n \neq 0\)
\(\therefore n = 13\)

\[\therefore T_7 = 0 \]

\(\therefore 12\) terms
\(\therefore 13\) terms

\[\therefore \text{substitution into the arithmetic sum formula} \]

\[\frac{n}{2} [26 - 2n] = 0 \]

\(\therefore 13\) terms
\[(3) \]

\[(6) \]
QUESTION 2

2.1 \[42 - 28 = 14 \] ✓ answer (1)

2.2 Approximately 88 kg ✓ answer (1)

NOTE: Accept a range from 86 to 89 kg

2.3 15 learners in the sample have a weight of less than 80 kg. One would expect \[\frac{15}{50} \times 250 = 75 \] learners in the grade to have a weight of less than 80 kg.

OR

15 learners in the sample have a weight of less than 80 kg. One would expect \[15 \times 5 = 75 \] learners in the grade to have a weight of less than 80 kg.

NOTE:
- Accept \[\frac{14}{50} \times 250 = 70 \]
- Answer as percentage: 1/2 marks
- Answer only: 2/2 marks

 ✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)

 ✓ Cumulative Frequency value read off the graph when less than 80 ✓ answer (2)

2.4 This sampling method is biased towards those who arrive early on a Monday morning. In this way all the learners in the Grade do not have the same chance of being selected for the sample. ✓ sensible explanation of random sample (1)

QUESTION 3

3.1 For mutually exclusive events
\[P(A \text{ or } B) = P(A) + P(B) \]
\[0,7 = 0,4 + k \]
\[k = 0,3 \]

Note:
- Answer only: FULL marks ✓ 0,7 = 0,4 + k ✓ answer (2)

NOTE:
If the candidate writes down \(k = 1 - 0,7 = 0,3 \): 0/2 marks

3.2 For independent events
\[P(A \text{ and } B) = P(A) \times P(B) \]
\[= 0,4k \]
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
\[0,7 = 0,4 + k - 0,4k \]
\[0,3 = 0,6k \]
\[k = 0,5 \]

OR

\[0,7 = 0,4 + k - 0,4k \]
\[0,3 = 0,6k \]
\[k = 0,5 \]

Note:
- Answer only: 1/4 marks ✓ 0,7 = 0,4 + k ✓ answer (4)
- Wrong formula: 0/4 marks ✓ 0,7 = 0,4 + k - 0,4k ✓ answer (4)
QUESTION 4

4.1 21 minutes is 1 standard deviation from the mean
∴ 34% of the pizzas are delivered between 21 and 24 minutes

Note: Answer only: FULL marks

4.2 15 minutes is 3 standard deviations to the left of the mean ∴ 50%
27 minutes is 1 standard deviation to the right of the mean ∴ 34%
84% of the pizzas are delivered between 15 and 27 minutes

OR
2% + 14% + 34% + 34%
= 84%

Note: Answer only: FULL marks

4.3 The required 2% is the area found to the right of 2 standard deviations on the right hand side of the mean.
Maximum for delivery should be 24 + 2(3)
= 30 minutes

Note: Answer only: FULL marks

QUESTION 5

5.1 Number of unique codes
\[= 7 \times 7 \times 7 \]
\[= 7^3 \]
\[= 343 \]

Note: Answer only: FULL marks

5.2 Number of unique codes without repetition
\[= 7 \times 6 \times 5 \]
\[= 210 \]

OR
\[\frac{7!}{4!} \]
\[= 210 \]

Note: Answer only: FULL marks

5.3 Number of codes with repetition that are greater than 300 and divisible by 5
\[= 4 \times 7 \times 2 - 1 \]
\[= 55 \]

OR
For a 100 numbers there are 14 numbers divisible by 5
14 \times 4 = 56
56 – 1 = 55

Note: No CA marking for the answer.
• Answer only 3/3 marks

Note: Answer only: FULL marks
QUESTION 6

6.1

\[M \cap F = 79 - x \]
\[M \cap S = 20 \]
\[F \cap S = 19 - x \]
\[M \cap F \cap S = x \]
\[S = 11 \]
\[F = 16 \]
\[40 - x \]

6.2

\[79 - x + 20 + x + 11 + 19 - x + 16 + 40 - x = 173 \]
\[185 - 2x = 173 \]
\[x = 6 \]

\textbf{OR}

232 complaints and 173 people in total
94 complaints from 47 people
138 complaints from remaining 126 people
For the two to be equal
\[126 - x = 138 - 3x \]
\[2x = 12 \]
\[x = 6 \]

\textbf{OR}

\[110 + 55 + 67 = 232 \]
\[2x + 20 + 11 + 16 = 232 - 173 \]
\[2x + 47 = 59 \]
\[2x = 12 \]
\[x = 6 \]

6.3

\[P(\text{at least two complaints}) = \frac{11 + 20 + 6 + 16}{173} \]
\[= \frac{53}{173} \]
\[= 0.31 \quad (0.30635838...) \]

\textbf{OR}

30.64%
QUESTION 7

<table>
<thead>
<tr>
<th>Noon temperature (in °C)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of electricity used</td>
<td>37</td>
<td>36</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>20</td>
</tr>
</tbody>
</table>

Scatter plot showing noon temperature vs electricity consumption

Note:
Please ignore the point (0 ; 41).

7.1 See scatter plot above

✓✓✓ all 9 points plotted correctly
2 marks if 5 – 8 points are plotted correctly
1 mark if 1 – 4 points are plotted correctly.

(3)
7.2 \[a = 40,97 \quad (40,97108844...)\]
\[b = -1,74 \quad (-1,73639558...)\]
\[\hat{y} = 40,97 - 1,74x\]

Note:
- Penalise 1 mark for incorrect rounding to ONE decimal place in either 7.2 or 7.3
- Answer only: FULL marks

NOTE:
If the candidate works the coefficients out manually that
\[b = \frac{-204,2}{117,6}\] then 2 marks for \(b\).

7.3 \[r = -0,97 \quad (-0,9699269087...)\]

NOTE: If the candidate gives \(b = \frac{6,139218}{3,42928}\) and not simplified then 1 mark.

7.4 There is a strong negative correlation between the noon temperature and the units of electricity used.

OR
As the noon temperature increases, the units of electricity used decreases.

OR
As the noon temperature decreases, the units of electricity used increases.

7.5 \[\hat{y} = 40,97 - 1,74(8)\]
\[\approx 27,05\]

OR
\[\hat{y} = 27,0799 \approx 27,08\]

Note:
- Answer only: 2/2 marks
- Accept a range of 26,5 – 27,5 if the least squares regression line is drawn and the answer is read off: 2/2 marks
QUESTION 8

8.1 Draw diameter AM and join M to B.
\[\hat{A}_1 + \hat{A}_2 = 90^\circ \] (rad \(\perp \) tangent)
\[\hat{B}_1 + \hat{B}_2 = 90^\circ \] (\(\angle \)s in a semi circle)
\[\hat{B}_2 = \hat{A}_2 \] (\(\angle \)s in same seg)
\[\hat{B}_1 = \hat{A}_1 \]

OR

Draw radii OC and OA
Let \(\hat{A}_2 = x \)
\[\hat{C}_1 = x \] (\(\angle \) opp = radii)
\[\hat{A}_1 = 90^\circ - x \] (rad \(\perp \) tan)
\[\angle AOC = 180^\circ - 2x \] (\(\angle \) sum \(\Delta \))
\[\angle ABC = 90^\circ - x \] (\(\angle \) circ cent = 2 \(\angle \) circumference)
\[\angle ABC = \hat{A}_1 \] (= 90\(^\circ\) – \(x \))

\[\text{NOTE:} \]
If there is no construction: 0 / 5 marks
If candidate changes lettering and states “Similarly”: full marks

OR

Draw QA extend to P. Draw tangent CP at C.
\[\angle PCQ = \angle PAQ \] (tan from comm pt)
\[\hat{C}_2 = \hat{A}_1 \] (\(\angle \) opp = sides)
\[\angle COA = 2\hat{ABC} \]
(\(\angle \) circ cent = 2 \(\angle \) circumference)
\[\hat{A}_1 + \hat{A}_2 = 90^\circ \] (tan \(\perp \) radius)
\[\angle COA = 180^\circ - (90^\circ - \hat{A}_1 + 90^\circ - \hat{C}_2) \]
\[= \hat{A}_1 + \hat{C}_2 \]
\[= \hat{A}_1 + \hat{A}_1 \]
\[= 2\hat{A}_1 \]
\[\hat{A}_1 = \frac{1}{2} \angle COA \]
\[= \hat{CBA} \]

\[\text{OR} \]
Draw diameter AM and Join M and C

\[
\hat{M}CA = 90^\circ \quad (\angle \text{s in semi circle})
\]

\[
\hat{A}MC + \hat{A}_2 = 90^\circ \quad (\angle \text{ sum } \Delta)
\]

\[
\hat{A}_1 + \hat{A}_2 = 90^\circ \quad (\text{rad } \bot \text{ tangent})
\]

\[
\hat{A}MC = \hat{A}_1
\]

\[
\hat{A}MC = \hat{B} \quad (\angle \text{s in same seg})
\]

\[
\hat{A}_1 = \hat{B}
\]

\[
\hat{A}_1 + \hat{A}_2 = 90^\circ
\]

\[
\text{tan } \bot \text{ radius}
\]

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\textbf{8.2.1} & \textbf{WR}S = 90^\circ & \checkmark \text{ statement} \\
\hline
\textbf{8.2.2} & \textbf{R}\hat{ST} = 50^\circ & \checkmark \text{ S/R} \\
& \hat{W} = 40^\circ & \checkmark \hat{W} = 40^\circ \\
& \checkmark \hat{W} + \hat{R}_1 = \hat{T}_1 & \checkmark \hat{W} = 40^\circ \\
& \hat{W} = 40^\circ & \checkmark \hat{W} + \hat{R}_1 = \hat{T}_1 \\
\textbf{OR} & \hat{T}_1 = 90^\circ & \checkmark \hat{W} + \hat{R}_1 = \hat{T}_1 \\
& \hat{W} + \hat{R}_1 = \hat{T}_1 & \checkmark \hat{W} = 40^\circ \\
& \hat{W} = 40^\circ & \checkmark \hat{W} + \hat{R}_1 = \hat{T}_1 \\
\hline
\textbf{8.2.3} & \hat{R}_2 = 40^\circ & \checkmark \hat{R}_2 = 40^\circ \\
& \hat{P}_1 = 40^\circ & \checkmark \hat{P}_1 = 40^\circ \\
& \checkmark \angle \text{s in same seg} & \checkmark \angle \text{s in same seg} \\
\hline
\end{tabular}
\end{table}
8.2.4 \[\hat{P}_1 = \hat{W} \quad (= 40^\circ) \]
WVPT is a cyclic quadrilateral (ext \(\angle = \text{int opp} \)
\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \quad (\text{ext} \ \angle \ \text{cyclic quad}) \]

OR
\[\hat{T}_1 = 90^\circ \quad (\angle \text{s in semi circle}) \]
\[\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \]
\[\hat{T}_2 = \hat{S}_1 \quad (\angle \text{s in same seg}) \]
\[\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{S}_1 \]
\[\hat{V}_1 = 90^\circ + \hat{S}_1 \quad (\text{ext} \ \angle \ \Delta) \]
\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \]

OR
\[\hat{P}_2 = 140^\circ \quad (\angle \text{s on str line}) \]
\[\hat{W} + \hat{P}_2 = 180^\circ \]
WVPT is cyclic quad (opp \(\angle \text{s suppl} \)
\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \quad (\text{ext} \ \angle \ \text{cyclic quad}) \]

OR
\[\hat{V}_1 = \hat{R}_1 + \hat{R}_2 + \hat{S}_1 \quad (\text{ext} \ \angle \ \Delta) \]
\[\hat{V}_1 = 90^\circ + \hat{S}_1 \]
\[\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \]
But \[\hat{T}_2 = \hat{S}_1 \quad (\angle \text{s in same seg}) \]
\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \]

OR
In \(\triangle \text{PTS and } \triangle \text{WVS} \)
\[\hat{P}_1 = \hat{W} \quad (= 40^\circ) \]
\(\hat{S}_2 \) is common
\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \quad (\angle \text{sum} \ \Delta) \]

\[\hat{P}_1 = \hat{W} \]
\(\text{WVPT is a cyclic quadrilateral} \)
\(\text{ext } \angle = \text{in opp} \)
\(\text{ext } \angle = \text{cyclic quad} \)

\[\hat{V}_1 = \hat{P}\hat{T}\hat{S} \]
\(\text{WVPT is a cyclic quadrilateral} \)
\(\text{ext } \angle = \text{in opp} \)
\(\text{ext } \angle = \text{cyclic quad} \)

\[\hat{T}_1 = 90^\circ \quad (\angle \text{s in semi circle}) \]
\(\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \)
\(\hat{T}_2 = \hat{S}_1 \)
\(\angle \text{s in same seg} \)

\[\hat{W} + \hat{P}_2 = 180^\circ \]
\(\text{WVPT is a cyclic quadrilateral} \)
\(\text{opp } \angle \text{ suppl} \)
\(\text{ext } \angle = \text{cyclic quad} \)

\[\hat{V}_1 = 90^\circ + \hat{S}_1 \]
\(\hat{P}\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \)
\(\hat{T}_2 = \hat{S}_1 \)
\(\angle \text{s in same seg} \)

\[\text{identification of triangles} \]
\(\hat{P}_1 = \hat{W} \)
\(\hat{S}_2 \) is common
\(\angle \text{sum } \Delta \)
QUESTION 9

9. \(\hat{C} = 90^\circ \) (\(\angle \)s in semi circle)
\(\text{OEA} = 90^\circ \) (corres \(\angle \)s; OD \(\parallel \) BC)
AE = 8 cm (line from circ cent \(\perp \) ch bis ch)
OE = 6 cm (Pythagoras)
ED = 10 – 6
 = 4 cm

OR
\(\hat{C} = 90^\circ \) (\(\angle \)s in semi circle)
\(\text{OEA} = 90^\circ \) (corres \(\angle \)s; OD \(\parallel \) BC)
OE || BC (given)
OA = OB (radii)
AE = EC = 8 cm (midpoint theorem)
OE = 6 cm (Pythagoras)
ED = 10 – 6
 = 4 cm

OR
\(\hat{C} = 90^\circ \) (\(\angle \)s in semi circle)
\(BC^2 = (20)^2 - (16)^2 \)
\(BC^2 = 144 \)
\(BC = 12 \)
OE = \(\frac{1}{2} \) BC (midpoint theorem)
OE = 6 cm
OD = 10 cm
ED = 10 – 6
 = 4 cm

OR
\(\hat{C} = 90^\circ \) (\(\angle \)s in semi circle)
\(BC^2 = (20)^2 - (16)^2 \)
\(BC^2 = 144 \)
\(BC = 12 \)
OE = \(\frac{1}{2} \) BC (midpoint theorem)
OE = 6 cm
ED = 4 cm

\[5\]
QUESTION 10

10.1

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation/Description</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\hat{A} = \hat{D}_4 = x) (tan ch th)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(\hat{E}_2 = x) (tan ch th)</td>
<td>OR ((\angle s) in same seg)</td>
</tr>
<tr>
<td>3.</td>
<td>(\hat{D}_2 = \hat{A} = x) (alt (\angle s); CA</td>
<td></td>
</tr>
</tbody>
</table>

10.2

1. \(\hat{B}_2 = \hat{F} \) (\(\angle s \) in same seg)
2. \(\hat{D}_3 = \hat{D}_1 \) (= chs subt = \(\angle s \))

Proof:

\[\triangle BHD \parallel \triangle FED \ (\angle \angle \angle) \]

10.3

\[FE = FD \]
\[BH \parallel BD \]
But \(FE = AB \) (given)

\[\frac{AB}{BD} = \frac{FD}{BH} \]

\[AB \cdot BD = FD \cdot BH \]

Diagram

- Points: A, B, C, D, E, F, G, H
- Lines: AB, AC, AD, AE, AF, BH, BD, FE

Diagram Notes:

- Points A, B, C, D, E, F, G, H are labeled.
- Lines AB, AC, AD, AE, AF, BH, BD, FE are drawn.
- \(\hat{A} = \hat{D}_4 = x \) (tan ch th)
- \(\hat{E}_2 = x \) (tan ch th)
- \(\hat{D}_2 = \hat{A} = x \) (alt \(\angle s \); CA || DF)
- \(\hat{B}_2 = \hat{F} \) (\(\angle s \) in same seg)
- \(\hat{D}_3 = \hat{D}_1 \) (= chs subt = \(\angle s \))
QUESTION 11

| | \(AF = FC \) (diags of parallelogram bisect) | ✓ \(AF = FC \)
| | \(FE \parallel CD \)
| | \(AE = ED \) (Prop Th; \(FE \parallel CD \)) **OR** (Midpoint Theorem) | ✓ reason
| | | (2)

| | \(AC = \frac{1}{2} \) (given)
| | \(CP \)
| | \(AD = \frac{1}{2} \) (given)
| | \(DQ \)
| | \(\frac{AC}{CP} = \frac{AD}{DQ} \)
| | \(CD \parallel PQ \) (converse proportionality theorem)
| | \(CD \parallel FE \) (given)
| | \(\therefore PQ \parallel FE \)
| | | **OR**
| | \(AC = \frac{1}{3} \)
| | \(AP \)
| | \(AD = \frac{1}{3} \)
| | \(AQ \)
| | \(\frac{AC}{AP} = \frac{AD}{AQ} \)
| | \(CD \parallel PQ \) (converse proportionality theorem)
| | \(CD \parallel FE \) (given)
| | \(\therefore PQ \parallel FE \)
| | | **OR**
| | \(AF = \frac{1}{6} \)
| | \(AP \)
| | \(AE = \frac{1}{6} \)
| | \(AQ \)
| | \(\frac{AF}{AP} = \frac{AE}{AQ} \)
| | \(\therefore PQ \parallel FE \) (converse proportionality theorem)
| | | **OR**
| | \(AF = \frac{1}{6} \)
| | \(AP = \frac{AE}{AQ} \)
| | conv prop theorem
| | | (3)

Copyright reserved Please turn over
11.3 In \(\triangle AEF \) and \(\triangle APQ \):

1. \(\hat{A} \) is common
2. \(\hat{A} \hat{E} \hat{F} = \hat{A} \hat{Q} \hat{P} \) (corres \(\angle s; \) \(FE \parallel PQ \))
3. \(\hat{A} \hat{F} \hat{E} = \hat{A} \hat{P} \hat{Q} \) (corres \(\angle s; \) \(FE \parallel PQ \))

\(\therefore \) \(\triangle AEF \parallel \parallel \triangle AQP \) (\(\angle \angle \angle \))

\[
\frac{FE}{PQ} = \frac{AF}{AP} \quad (\parallel \triangle s)
\]

\[
\frac{FE}{60} = \frac{1}{6}
\]

\(FE = 10 \text{ cm} \)

OR

In \(\triangle ADC \) and \(\triangle APQ \):

1. \(\hat{A} \) is common
2. \(\hat{A} \hat{D} \hat{C} = \hat{A} \hat{Q} \hat{P} \) (corres \(\angle s; \) \(CD \parallel PQ \))
3. \(\hat{A} \hat{C} \hat{D} = \hat{A} \hat{P} \hat{Q} \) (corres \(\angle s; \) \(CD \parallel PQ \))

\(\therefore \) \(\triangle ADC \parallel \parallel \triangle AQP \) (\(\angle \angle \angle \))

\[
\frac{AC}{AP} = \frac{AD}{AQ} = \frac{1}{3} \quad (\parallel \triangle s)
\]

\[
CD = \frac{1}{3} PQ
\]

\(CD = 20 \text{ cm} \)

But \(AF = FC \)

\(AE = ED \quad \text{(Midpoint Theorem)} \)

\[
\frac{FE}{2} = \frac{1}{2} \quad \text{(5 marks)}
\]

\(FE = 10 \text{ cm} \)

NOTE: If the similarity has not been proven, then max 3/5 marks

\[
\begin{align*}
\checkmark & \text{ first pair of angles equal with reason} \\
\checkmark & \text{ second pair of angles equal with reason} \\
\checkmark & \frac{AF}{AP} = \frac{1}{6} \\
\checkmark & \frac{FE}{PQ} = \frac{AF}{AP} \\
\checkmark & \text{ answer} \\
\end{align*}
\]

\((5) \)

\[
\begin{align*}
\checkmark & \text{ first pair of angles equal with reason} \\
\checkmark & \text{ second pair of angles equal with reason} \\
\checkmark & CD = \frac{1}{3} PQ \\
\checkmark & FE = \frac{1}{2} CD \\
\checkmark & \text{ answer} \\
\end{align*}
\]

\((5) \)

TOTAL: 100