basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of $\mathbf{1 4}$ pages.

NOTE:

- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

QUESTION 1

1.1	$\begin{align*} & T_{k+1}=T_{k}-2 ; k \geq 1 ; T_{1}=12 \\ & T_{1}=12 \\ & T_{2}=12-2=10 \\ & T_{3}=10-2=8 \\ & T_{4}=8-2=6 \tag{3} \end{align*}$	$\begin{aligned} & \checkmark 10 \\ & \checkmark 8 \\ & \checkmark 6 \end{aligned}$
1.2	$\begin{array}{ll} 12+10+8+6+4+2+0+(-2)+(-4)+(-6)+(-8)+(-10)+(-12) \\ =0 & \\ \therefore 13 \text { terms } & \begin{array}{l} \text { Note: } \\ \text { If a learner writes out } \\ 12+10+8+6+4+2+0 \\ \text { then 1/3 marks } \end{array} \\ & \begin{array}{l} \text { Note: } \\ \text { Answer only: FULL marks } \end{array} \\ \text { OR } & \end{array}$	$\checkmark \checkmark$ expansion $\checkmark 13$ terms (3)
	There are 6 positive terms before the 7 th term, which is 0 . We need 6 negative terms of equal value to the positive terms so that the sum is zero $\begin{aligned} & 6 \text { positive terms }+1 \text { zero term }+6 \text { negative terms } \\ & =13 \text { terms } \end{aligned}$ OR	$\checkmark T_{7}=0$ $\checkmark 12$ terms $\checkmark 13$ terms (3)
	$\begin{aligned} & \frac{n}{2}[2(12)+(n-1)(-2)]=0 \\ & \frac{n}{2}[24+2-2 n]=0 \\ & \frac{n}{2}[26-2 n]=0 \\ & 13 n-n^{2}=0 \\ & n(13-n)=0 \\ & n \neq 0 \quad \text { or } \quad n=13 \end{aligned}$	\checkmark substitution into the arithmetic sum formula $\checkmark \frac{n}{2}[26-2 n]=0$ $\checkmark 13$ terms
		(3) [6]

QUESTION 2

2.1	$42-28=14$	\checkmark answer
		(1)
2.2	Approximately 88 kg NOTE: Accept a range from 86 to 89 kg	\checkmark answer (1)
2.3	15 learners in the sample have a weight of less than 80 kg . One would expect $\frac{15}{50} \times 250=75$ learners in the grade to have a weight of less than 80 kg . OR 15 learners in the sample have a weight of less than 80 kg . One would expect $15 \times 5=75$ learners in the grade to have a weight of less than 80 kg . NOTE: - Accept $\frac{14}{50} \times 250=70$ - Answer as percentage: $1 / 2$ marks - Answer only: $2 / 2$ marks	\checkmark Cumulative Frequency value read off the graph when less than 80 \checkmark answer \checkmark Cumulative Frequency value read off the graph when less than 80 \checkmark answer
2.4	This sampling method is biased towards those who arrive early on a Monday morning. In this way all the learners in the Grade do not have the same chance of being selected for the sample.	\checkmark sensible explanation of random sample

QUESTION 3

3.1	For mutually exclusive events $\mathrm{P}(\mathrm{A}$ or B$)$ $=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$ 0,7 $=0,4+k$ k $=0,3$$\quad$Note: Answer only: FULL marks NOTE: If the candidate writes down $k=1-0,7=0,3: \quad 0 / 2$ marks	$\begin{aligned} & \checkmark 0,7=0,4+k \\ & \checkmark \text { answer } \end{aligned}$
3.2	For independent events $\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})$ $=0,4 k$ $\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})$ $0,7=0,4+k-0,4 k$ $0,3=0,6 k$ Note: $\begin{equation*} k=0,5 \tag{4} \end{equation*}$ - Answer only: $1 / 4$ marks OR - Wrong formula: 0/4 marks $\begin{align*} 0,7 & =0,4+k-0,4 k \\ 0,3 & =0,6 k \\ k & =0,5 \tag{4} \end{align*}$	$\begin{aligned} & \checkmark \mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\ & \checkmark 0,4 k \\ & \checkmark 0,7=0,4+k-0,4 k \\ & \checkmark \text { answer } \end{aligned}$ $\checkmark \checkmark \checkmark 0,7=0,4+k-0,4 k$ $\checkmark \text { answer }$

QUESTION 4

4.1	21 minutes is 1 standard deviation from the mean $\therefore 34 \%$ of the pizzas are delivered between 21 and 24 minutes	$\checkmark 1$ standard deviation \checkmark 34\%	(2)
4.2	15 minutes is 3 standard deviations to the left of the mean $\therefore 50 \%$ 27 minutes is 1 standard deviation to the right of the mean $\therefore 34 \%$ 84% of the pizzas are delivered between 15 and 27 minutes $\begin{aligned} & \text { OR } \\ & 2 \%+14 \%+34 \%+34 \% \\ & =84 \% \end{aligned}$ Note: Answer only: FULL marks	$\begin{aligned} & \hline \checkmark 50 \% \\ & \checkmark 34 \% \\ & \checkmark 84 \% \\ & \\ & \checkmark 50 \% \\ & \checkmark 34 \% \\ & \checkmark 84 \% \end{aligned}$	(3) (3)
4.3	The required 2% is the area found to the right of 2 standard deviations on the right hand side of the mean. Maximum for delivery should be Note: $24+2(3)$ $=30$ minutes Answer only: FULL marks	$\checkmark 2$ standard deviations $\checkmark 24+2(3)$ $\checkmark 30$	(3) (3) [8]

QUESTION 5

\begin{tabular}{|c|c|c|c|}
\hline 5.1 \& \begin{tabular}{ll|}
Number of unique codes \& \\
\(=7 \times 7 \times 7\) \& \begin{tabular}{l}
Note: \\
\(=7^{3}\) \\
\(=343\)
\end{tabular} \\
Answer only: FULL marks \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(\checkmark 7 \times 7 \times 7\) \\
\(\checkmark\) answer
\end{tabular} \& (2) \\
\hline 5.2 \& \begin{tabular}{l}
Number of unique codes without repetition
\[
\begin{aligned}
\& =7 \times 6 \times 5 \\
\& =210
\end{aligned}
\] \\
Note: \\
OR \\
\(\frac{7!}{4!}\)
\[
=210
\]
\end{tabular} \& \begin{tabular}{l}
\(\checkmark 7 \times 6 \times 5\) \\
\(\checkmark\) answer \\
\(\checkmark \frac{7!}{4!}\) \\
\(\checkmark\) answer
\end{tabular} \& (2)
(2) \\
\hline 5.3 \& \begin{tabular}{l}
Number of codes with repetition that are greater than 300 and divisible by 5
\[
\begin{aligned}
\& =4 \times 7 \times 2-1 \\
\& =55
\end{aligned}
\] \\
Note: \\
- No CA marking for the answer. \\
OR \\
- Answer only \(3 / 3\) marks \\
For a 100 numbers there are 14 numbers divisible by 5
\[
\begin{aligned}
\& 14 \times 4=56 \\
\& 56-1=55
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(\checkmark 4 \times 7 \times 2\) \\
\(\checkmark-1\) \\
\(\checkmark\) answer \\
\(\checkmark 14 \times 4\) \\
\(\checkmark-1\) \\
\(\checkmark\) answer
\end{tabular} \& (3)

(3)
[7]

\hline
\end{tabular}

QUESTION 6

6.1		$\begin{align*} & \checkmark 79-x \\ & \checkmark 20 \\ & \checkmark 19-x \\ & \checkmark 11 \\ & \checkmark 16 \\ & \checkmark 40-x \tag{6} \end{align*}$
6.2	$\begin{aligned} 79-x+20+x+11+19-x+16+40-x & =173 \\ 185-2 x & =173 \\ x & =6 \end{aligned}$ OR 232 complaints and 173 people in total 94 complaints from 47 people 138 complaints from remaining 126 people For the two to be equal $\begin{aligned} 126-x & =138-3 x \\ 2 x & =12 \\ x & =6 \end{aligned}$ OR $110+55+67=232$ $2 x+20+11+16=232-173$ $2 x+47=59$ $2 x=12$ $x=6$	\checkmark addition $\checkmark 173$ \checkmark answer (3) $\checkmark 126-x$ and $138-3 x$ $\checkmark 126-x=138-3 x$ \checkmark answer (3) $\checkmark 232$ $\checkmark 2 x+20+11+16=232-173$ \checkmark answer
6.3	$\begin{aligned} & \text { P(at least two complaints) } \\ & =\frac{11+20+6+16}{173} \\ & =\frac{53}{173} \\ & =0,31 \quad(0,30635838 \ldots) \\ & \text { OR } 30,64 \% \end{aligned}$	$\begin{aligned} & \checkmark 11+20+6+16 \\ & \checkmark 173 \end{aligned}$ \checkmark answer

QUESTION 7

Noon temperature (in ${ }^{\circ} \mathbf{C}$)	2	3	4	5	7	7	9	10	11
Units of electricity used	37	36	32	33	32	28	27	23	20

7.1	See scatter plot above Note: Please ignore the point $(0 ; 41)$.	$\checkmark \checkmark \checkmark$ all 9 points plotted correctly 2 marks if 5-8 points are plotted correctly 1 mark if $1-4$ points are plotted correctly.

7.2	$\begin{align*} & a=40,97 \quad(40,97108844 \ldots . .) \\ & b=-1,74 \quad(-1,736394558 \ldots) \\ & \hat{y}=40,97-1,74 x \tag{4} \end{align*}$ Note: - Penalise 1 mark for incorrect rounding to ONE decimal place in either 7.2 or 7.3 - Answer only: FULL marks NOTE: If the candidate works the coefficients out manually that $b=\frac{-204,2}{117,6}$ then 2 marks for b.	$\begin{aligned} & \checkmark \checkmark a \\ & \checkmark b \\ & \checkmark \text { equation } \end{aligned}$
7.3	$r=-0,97 \quad(-0,9699269087 \ldots)$ NOTE: If the candidate gives $b=\frac{6,139218}{3,42928} r$ and not simplified then 1 mark.	$\checkmark \checkmark$ answer (2)
7.4	There is a strong negative correlation between the noon temperature and the units of electricity used. OR As the noon temperature increases, the units of electricity used decreases. OR As the noon temperature decreases, the units of electricity used increases.	\checkmark strong \checkmark negative $\checkmark \checkmark$ as noon temp increases \& units decrease $\checkmark \checkmark$ as noon temp decreases \& units increases
7.5	$\hat{y} \approx 40,97-1,74(8)$ $\approx 27,05$ OR Note: • Answer only: $2 / 2$ marks - Accept a range of 26,5 - 27,5 if the least squares regression line is drawn and the answer is read off: 2/2 marks 	\checkmark substitution \checkmark answer (2) [13]

QUESTION 8

8.1 Draw diameter AM and join M to B .
$\hat{\mathrm{A}}_{1}+\hat{\mathrm{A}}_{2}=90^{\circ} \quad$ (rad \perp tangent)
$\hat{\mathrm{B}}_{1}+\hat{\mathrm{B}}_{2}=90^{\circ} \quad(\angle \mathrm{s}$ in a semi circle)
$\hat{\mathrm{B}}_{2}=\hat{\mathrm{A}}_{2}$
($\angle \mathrm{s}$ in same seg)
$\hat{\mathrm{B}}_{1}=\hat{\mathrm{A}}_{1}$

OR

Draw radii OC and OA
Let $\hat{\mathrm{A}}_{2}=x$
$\hat{\mathrm{C}}_{1}=x(\angle \mathrm{opp}=$ radii $)$
$\hat{\mathrm{A}}_{1}=90^{\circ}-x \quad(\mathrm{rad} \perp \tan)$
AÔC $=180^{\circ}-2 x \quad(\angle \operatorname{sum} \Delta)$
$\mathrm{ABC}=90^{\circ}-x \quad(\angle$ circ cent $=2 \angle$ circumferende $)$
$\mathrm{ABC}=\hat{\mathrm{A}}_{1} \quad\left(=90^{\circ}-x\right)$

NOTE:

If there is no construction: 0 / 5 marks
If candidate changes lettering and states
"Similarly": full marks

OR

Draw QA extend to P . Draw tangent CP at C .
PC $=$ PA \quad (tan from comm pt)
$\hat{\mathrm{C}}_{2}=\hat{\mathrm{A}}_{1} \quad(\angle \mathrm{~s}$ opp $=$ sides $)$
$\mathrm{CO} A=2 \mathrm{AB} \mathrm{C}$
(\angle circ cent $=2 \angle$ circumf)
$\hat{\mathrm{A}}_{1}+\hat{\mathrm{A}}_{2}=90^{\circ} \quad$ (tan \perp radius)
CÔA $=180^{\circ}-\left(90^{\circ}-\hat{\mathrm{A}}_{1}+90^{\circ}-\hat{\mathrm{C}}_{2}\right)$

$$
=\hat{\mathrm{A}}_{1}+\hat{\mathrm{C}}_{2}
$$

\checkmark construction \checkmark S/R
\checkmark S/R
$\checkmark \hat{\mathrm{A}}_{1}+\hat{\mathrm{A}}_{2}=90^{\circ}$
$\checkmark \tan \perp$ radius

$$
=\hat{\mathrm{A}}_{1}+\hat{\mathrm{A}}_{1}
$$

$$
=2 \hat{\mathrm{~A}}_{1}
$$

(5)
(5)

$$
\hat{\mathrm{A}}_{1}=\frac{1}{2} \mathrm{CO} \mathrm{~A}
$$

$$
=\mathrm{C} \hat{B} \mathrm{~A}
$$

OR

8.2.4		$\checkmark \hat{\mathrm{P}}_{1}=\hat{W}$ \checkmark WVPT is a cyclic quadrilateral \checkmark ext $\angle=$ in opp \checkmark ext \angle cyclic quad $\checkmark \angle \mathrm{s}$ in semi circle $\checkmark \mathrm{PTS}=90^{\circ}+\hat{\mathrm{T}}_{2}$ $\checkmark \hat{\mathrm{T}}_{2}=\hat{\mathrm{S}}_{1}$ $\checkmark \angle \mathrm{s}$ in same seg $\checkmark \hat{\mathrm{W}}+\hat{\mathrm{P}}_{2}=180^{\circ}$ \checkmark WVPT is a cyclic quadrilateral \checkmark opp \angle suppl \checkmark ext \angle cyclic quad $\checkmark \hat{\mathrm{V}}_{1}=90^{\circ}+\hat{\mathrm{S}}_{1}$ \checkmark PTS $=90^{\circ}+\hat{\mathrm{T}}_{2}$ $\checkmark \hat{\mathrm{T}}_{2}=\hat{\mathrm{S}}_{1}$ $\checkmark \angle \mathrm{s}$ in same seg \checkmark identification of triangles $\checkmark \hat{\mathrm{P}}_{1}=\hat{\mathrm{W}}$ $\checkmark \hat{\mathrm{S}}_{2}$ is common $\checkmark \angle \operatorname{sum} \Delta$
		$\begin{array}{r} (4) \\ {[15]} \\ \hline \end{array}$

QUESTION 9

9.		$\checkmark \hat{C}=90^{\circ}$ $\checkmark \mathrm{OE} A=90^{\circ}$ \checkmark line from circ cent \perp ch bis ch $\checkmark \mathrm{OE}=6 \mathrm{~cm}$ $\checkmark \mathrm{ED}=4 \mathrm{~cm}$ $\checkmark \hat{\mathrm{C}}=90^{\circ}$ $\checkmark \mathrm{OE} \mathrm{A}=90^{\circ}$ \checkmark midpoint theorem $\checkmark \mathrm{OE}=6 \mathrm{~cm}$ $\checkmark \mathrm{ED}=4 \mathrm{~cm}$
	$\begin{aligned} & \text { OR } \\ & \hat{\mathrm{C}}=90^{\circ} \quad(\angle \mathrm{s} \text { in semi circle) } \\ & \mathrm{BC}^{2}=(20)^{2}-(16)^{2} \\ & \mathrm{BC}^{2}=144 \\ & \mathrm{BC}=12 \\ & \mathrm{OE}=\frac{1}{2} \mathrm{BC} \quad \text { (midpoint theorem) } \\ & \mathrm{OE}=6 \mathrm{~cm} \\ & \mathrm{OD}=10 \mathrm{~cm} \\ & \mathrm{ED}=10-6 \\ & \\ & =4 \mathrm{~cm} \end{aligned}$	$\checkmark \hat{\mathrm{C}}=90^{\circ}$ $\checkmark \mathrm{BC}=12$ \checkmark reason $\checkmark \mathrm{OE}=6 \mathrm{~cm}$ $\checkmark \mathrm{ED}=4 \mathrm{~cm}$
	OR $\begin{aligned} & \hat{\mathrm{C}}=90^{\circ} \quad(\angle \mathrm{s} \text { in semi circle }) \\ & \mathrm{BC}^{2}=(20)^{2}-(16)^{2} \\ & \mathrm{BC}^{2}=144 \\ & \mathrm{BC}=12 \\ & \mathrm{OE}=\frac{1}{2} \mathrm{BC} \quad \text { (midpoint theorem) } \\ & \mathrm{OE}=6 \mathrm{~cm} \\ & \mathrm{ED}=4 \mathrm{~cm} \end{aligned}$	$\checkmark \hat{C}=90^{\circ}$ $\checkmark \mathrm{BC}=12$ \checkmark reason $\checkmark \mathrm{OE}=6 \mathrm{~cm}$ $\checkmark \mathrm{ED}=4 \mathrm{~cm}$

QUESTION 10

10.1	$\begin{array}{ll} \hline \hat{\mathrm{A}}=\hat{\mathrm{D}}_{4}=x & \text { (tan ch th) } \\ \hat{\mathrm{E}}_{2}=x & \text { (tan ch th) OR }(\angle \mathrm{s} \text { in same seg) } \\ \hat{\mathrm{D}}_{2}=\hat{\mathrm{A}}=x & \text { (alt } \angle \mathrm{s} ; \mathrm{CA} \\| \mathrm{DF}) \end{array}$	$\checkmark \hat{A}=x$ \checkmark tan ch th $\checkmark \hat{E}_{2}=x$ \checkmark reason $\checkmark \hat{D}_{2}=x$ \checkmark alt $\angle \mathrm{s}$; CA $\|\mid$ DF (6)
10.2	In \triangle BHD and Δ FED 1. $\quad \hat{\mathrm{B}}_{2}=\hat{\mathrm{F}} \quad(\angle \mathrm{s}$ in same seg) 2. $\quad \hat{\mathrm{D}}_{3}=\hat{\mathrm{D}}_{1} \quad(=$ chs subt $=\angle \mathrm{s})$ \triangle BHD $\|\|\mid \Delta$ FED $(\angle \angle \angle)$	$\checkmark \hat{\mathrm{B}}_{2}=\hat{\mathrm{F}}$ $\checkmark \angle \mathrm{s}$ in same seg $\checkmark \hat{D}_{3}=\hat{D}_{1}$ $\checkmark=$ chs subt $=\angle \mathrm{s}$ $\checkmark \angle \angle \angle$
10.3	$\begin{align*} & \frac{\mathrm{FE}}{\mathrm{BH}}=\frac{\mathrm{FD}}{\mathrm{BD}} \quad(\\|\| \| \Delta \mathrm{s}) \tag{5}\\ & \text { But } \mathrm{FE}=\mathrm{AB} \\ & \frac{\mathrm{AB}}{\mathrm{BH}}=\frac{\mathrm{FD}}{\mathrm{BD}} \tag{2}\\ & \text { (given) } \\ & \text { AB.BD }=\mathrm{FD} \cdot \mathrm{BH} \end{align*}$	$\begin{aligned} & \checkmark \frac{\mathrm{FE}}{\mathrm{BH}}=\frac{\mathrm{FD}}{\mathrm{BD}} \\ & \checkmark \mathrm{FE}=\mathrm{AB} \end{aligned}$

QUESTION 11

