

ADVANCED PROGRAMME MATHEMATICS CORE MODULE: CALCULUS AND ALGEBRA

Time: 2 hours

200 marks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 6 pages, an Information Booklet of 2 pages (i ii) and an Answer Sheet of 2 pages (i ii). Please check that your question paper is complete.
- 2. Non-programmable and non-graphical calculators may be used, unless otherwise indicated.
- 3. All necessary calculations must be clearly shown and writing should be legible.
- 4. Diagrams have not been drawn to scale.
- 5. Trigonometric calculations should be done using radians and answers should be given in radians.
- 6. Round off your answers to two decimal digits, unless otherwise indicated.

1.1 Solve for *x*, showing your working:

(a)
$$e^{\pi x} - 3 = 0$$
 (4)

(b)
$$|\tan x| = 2$$
 $x \in (0; 2\pi)$ (6)

- Determine the value of *n* if $x = \frac{1}{2}$ is a solution to the equation: (c) $\log_{\frac{1}{2}} x + \log_2 x^n = -2$ (4)
- 1.2 Vusi is served a cup of Earl Grey tea at a restaurant. The temperature (P) in °C, of the tea as it cools over time (t) in minutes can be modelled by the function:

 $P = 70 \times 1, 2^{-t} + 22$

- Determine: (a)
 - the initial temperature of the tea. (1)
 - (2)the room temperature.
- Vusi can drink his tea when the temperature reaches 55 °C but will not drink (b) the tea if the temperature drops below 40 °C.
 - Give the time interval (t) for which Vusi can drink his tea. (7)

QUESTION 2

Prove, by mathematical induction, that $5^{2n} - 1$ is divisible by 8 for every positive integer n.

[14]

[25]

QUESTION 3

3.1 Determine, in terms of *a* and *b*, the real part of the complex number:

$$\frac{a+bi}{a-bi}\tag{7}$$

One solution to the equation $2x^3 + px^2 + qx - 58 = 0$ is 3 - 7i. 3.2 Calculate the values of *p* and *q* respectively. (10)[17]

 $\frac{a}{a}$

The point A(1; $\sqrt{3}$) lies on a circle with centre the origin. A tangent to the circle is drawn at A and this intercepts the *x*-axis at B. A $\hat{O}B = \theta$.

4.2	Hence, calculate the area enclosed between the circle, the tangent and the <i>x</i> -axis, indicated by the shaded region in the diagram.	(9)
		[15]

QUESTION 5

The functions p, q and r are defined, for $x \in R$, by:

$$p(x) = \frac{1}{2+3x}; x \neq -\frac{2}{3}$$
 $q(x) = x^2 + 6$ $r(x) = 2x - 5$

5.1 Find:

(a)
$$p'(x)$$
 (4)

(b)
$$p^{-1}(x)$$
 (4)

5.2 Express the following as composite functions of p, q and/or r:

(a)
$$\frac{1}{2+3(x^2+6)}$$
 (3)

(b)
$$\frac{2}{2+3x} - 5$$
 (3)

5.3 Given that
$$g(x) = \frac{q(x)}{r(x)}$$
, determine the coordinates of the stationary points of g. (8)
[22]

GRADE 12 EXAMINATION: ADVANCED PROGRAMME MATHEMATICS – CORE MODULE: CALCULUS AND ALGEBRA

QUESTION 6

6.1 It is given that:
$$f(x) = \frac{2x^2 + x - 1}{x^2 + px + 4}$$

- (a) For which value(s) of p will the graph of f have:
 - (i) one *x*-intercept (4)
 - (ii) one vertical asymptote (3)
- (b) Given that: p = -5
 - (i) Solve for x if $f(x) \ge 0$ (7)
 - (ii) Sketch the graph of f, including intercepts with the axes and asymptotes on the Answer Sheet. Stationary points are not required. (10)

6.2 It is given that:
$$g(x) = \begin{cases} -x^2 - x + 3 & \text{if } x < 0 \\ |x - 3| & \text{if } x \ge 0 \end{cases}$$

- (a) Showing working, with correct notation, prove that g is differentiable at x = 0. (10)
 - (b) Sketch g, showing the stationary point and intercepts with the axes on the Answer Sheet.
 (8)
 [42]

QUESTION 7

7.1 It is required to find the smallest positive solution to the equation:

$$3\left(x-2\right)^2-1=\frac{4}{x}$$

- (a) Show that a solution exists on the domain $x \in (2; 3)$. (3)
- (b) Hence, find this solution using Newton's method, correct to 6 decimal places. (7)

7.2 Given:
$$\sin y = x$$
 and $0 < y < \frac{\pi}{2}$.

(a) Find an expression for
$$\frac{dy}{dx}$$
. (5)

(b) Hence, evaluate
$$\frac{dy}{dx}$$
 when $x = 0,5$. (4) [19]

Vanessa finds the area enclosed by the curve $y = qx^2 + 1$ and the *x*-axis, between x = 0 and x = 4, using Riemann Sums.

She finds that if she uses *n* rectangles, an expression for the area simplifies to:

$$A = 36 + \frac{48}{n} + \frac{16}{n^2}$$

- 8.1 Find the exact area. (2)
 8.2 Calculate the percentage error if 16 rectangles are used. (4)
- 8.3 Determine, by any method, the value of q. (7) [13]

QUESTION 9

e

- 9.1 Integrate by parts: $\int x(2x-1)^{\frac{2}{3}} dx$
- 9.2 Determine the integral:

$$\int \frac{\left(\sqrt{x}+1\right)^3}{\sqrt{x}} dx \tag{7}$$

- 9.3 An identity is given: $(\sec x \tan x)^2 = a \sec^2 x + b \sec x \tan x + c$
 - (a) Determine the values of a, b and c. (5)
 - (b) Hence, determine the integral:

$$\int \left(\sec x - \tan x\right)^2 \, dx \tag{5}$$

[25]

(8)

The diagram shows a frustum of a cone with base diameter 24 cm, top diameter 8 cm and slant height 17 cm. This has been created by rotating a certain function about the *x*-axis.

With the help of a suitable sketch on a Cartesian plane, write down the integral that would represent the volume of the frustum. You do not need to evaluate the integral.

[8]

Total: 200 marks