MATHEMATICAL LITERACY: PAPER II
 MARKING GUIDELINES

Time: 3 hours
150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

Key:	accuracy method continuous accuracy rounding
Topics	
F	Finance
MP	Maps and Plans
M	Measurement P
Probability	
DH	Data Handling

QUESTION 1

			MA	Topic	TL
1.		e-Tolls			
	1.1	49 or 45 (as shown on annexure 1)	(2)	MP	2
	1.2	$\begin{aligned} & \hline \text { Sunbird = Gantry } 8 \\ & \text { Flamingo = Gantry } 6 \\ & \text { Travelling in northerly direction (or NNE) } \end{aligned}$	(2)	MP	2
	1.3	```Distance on map \(=6 \mathrm{~cm}\) 6 cm : 21 km \(6 \mathrm{~cm}: 2100000\) (converting from km to cm) 1:350 000 OR Distance on map \(=6,5 \mathrm{~cm} \approx 7 \mathrm{~cm}\) \(7 \mathrm{~cm}=2100000 \mathrm{~cm}\) 1 : 300000```	(5)	MP	3
	$\begin{aligned} & \hline 1.4 \\ & 1.4 .1 \\ & \\ & 1.4 .2 \end{aligned}$	$\begin{aligned} & \mathrm{R} 2,58+\mathrm{R} 3,36+\mathrm{R} 2,76 \\ & =\mathrm{R} 8,70 \\ & \\ & (\mathrm{R} 8,70+\mathrm{R} 11,61) \times 24 \text { days } \\ & =\mathrm{R} 20,31 \times 24 \\ & =\mathrm{R} 487,44 \end{aligned}$	(4) (5)	MP	3
	1.5	$\begin{aligned} & \text { Full amount } \times 69 \%=\text { Discounted price } \\ & x \times 69 \%=\text { R20,31 } \\ & x=\frac{\mathrm{R} 20,31}{69 \%} \\ & x=\mathrm{R} 29,43 \\ & \text { R29,43 }-\mathrm{R} 20,31 \\ & =\mathrm{R} 9,12 \end{aligned}$	(5)	F	3
	1.6	Route (See answer sheet)	(4)	MP	3
	1.7.1	Amount excluding VAT: $\begin{array}{\|ll} & \mathrm{R} 133,38 \div 114 \%=\mathrm{R} 117 \\ \text { OR } & \mathrm{R} 133,38 \times \frac{100}{114}=\mathrm{R} 117 \end{array}$ *Note: If they calculate 14% and then subtract (= R114,71) they get zero for this calculation.	(3)	F	2
	1.7.2	$\begin{array}{\|l} \text { Total VAT amount: } \\ \text { R133,38 - R117 }=\mathrm{R} 16,38 \\ * R 133,38-\mathrm{R} 114,71=\mathrm{R} 18,67 \\ \hline \end{array}$	(2)	F	2

2.		Travelling (Time and Direction/maps)			
	2.1.1	$\begin{aligned} & \text { Arrive } 05: 25 \text { Leave } 07: 45 \\ & 07: 45-5: 25 \\ & =2 \text { hours } 20 \text { minutes } \end{aligned}$	(4)	M	3
	2.1.2	$\begin{aligned} & 08 \mathrm{hr} 40 \mathrm{~min}+07 \mathrm{hr} 50 \mathrm{~min}+1 \mathrm{hr} \\ & =17 \mathrm{hr} 30 \mathrm{~min} \\ & \therefore \text { Thabo is correct } \end{aligned}$	(5)	M	4
	2.1.3	18:45 + 8 hr 40 min flight time $=03: 25$	(4)	M	3
	2.1.4	$\begin{aligned} & 08 \mathrm{hr} 40 \mathrm{~min}+07 \mathrm{hr} 50 \mathrm{~min}+2 \mathrm{hr} 20 \mathrm{~min} \\ & =18 \mathrm{hr} 50 \mathrm{~min} \\ & =\mathrm{OR} 18,8 \mathrm{hr} \end{aligned}$	(4)	M	3
	2.2.1	1,85\% \times R25 $000=\mathrm{R} 462,50$	(3)	F	2
	2.2.2	$\begin{aligned} & \text { R25 } 000 \times \text { Error! Bookmark not defined. } \frac{100}{101,85} \\ & =\text { R24 545,90 } \\ & \text { R24 537,50 } \div \text { R18,3325 } \\ & =£ 1338,93 \\ & =£ 1335 \end{aligned}$ OR If a candidate does the following they only get 3 marks $\begin{aligned} & \text { R25 } 000-\text { R462,50 = R24 537,50 } \\ & \text { R24 537,50 } \div \text { R18,3325 } \\ & =£ 1338,4699 \\ & =£ 1335 \end{aligned}$	(5)	F	3
	2.3	$3,25 \% \div 365 \approx=0,008904 \%$	(2)	F	2
	2.4	$\begin{aligned} & \text { Correct tax bracket } \\ & \text { R87 382 }+35 \% \times(\text { R410 } 000-\text { R377 450 }) \\ & =\text { R87 } 382+35 \% \times \text { R32 } 550 \\ & =\text { R87 } 382+\text { R11 } 392,50 \\ & =\text { R98 774,50 } \\ & \text { R98 774,50 - R12 726 } \\ & =\text { R86 046,50 } \end{aligned}$	(5)	F	4

3.		Mr and Mrs Pillay			
	$\begin{aligned} & 3.1 .1 \\ & 3.1 .2 \\ & 3.1 .3 \\ & 3.1 .4 \\ & 3.1 .5 \end{aligned}$	FALSE, she lies on the $25^{\text {th }}$ percentile. FALSE, just less than 50% were heavier than him. TRUE. TRUE or FALSE, the girl was growing a little lower than the mean TRUE.	(10)	DH	4
	3.2.1	$\frac{22 \sqrt{2}^{100} \sqrt{ }^{a}\left(\frac{11}{50}\right)}{}$	(2)	P	2
	3.2.2	$100-27.6=72,4 \%$	(3)	P	2
	3.2.3	$\begin{aligned} & 23,9: 100 \\ & =239: 1000 \end{aligned}$	(2)	P	2
	3.3	200ℓ NEW GEYSER: $\begin{aligned} & =2 \times \pi \times r \times l+\pi \times r^{2} \times 2 \\ & =2 \times 3,14 \times 275 \times 1470+3,14 \times 275^{2} \times 2 \\ & =2538690+474925 \mathrm{~mm}^{2} \\ & =3013615 \mathrm{~mm}^{2} \end{aligned}$ 100ℓ OLD GEYSER: $\begin{aligned} & =2 \times \pi \times r \times l+\pi \times r^{2} \times 2 \\ & =2 \times 3,14 \times 275 \times 840+3,14 \times 275^{2} \times 2 \\ & =1450680+474925 \mathrm{~mm}^{2} \\ & =1925605 \mathrm{~mm}^{2} \end{aligned}$ Therefore 1925605×2 $=3851210 \mathrm{~mm}^{2}$ The surface area is not doubled so Mr Pillay is incorrect.	(8)	M	4
	3.4	He used the diameter measurement He should have divided by two to get the radius. $550 \div 2=275$ He converted incorrectly from mm^{3} to cm^{3}. He divided by 10 instead of 10^{3}. $798278693,3 \div 1000=798278,6933$ OR they could have followed the correct answer through $\begin{aligned} & \pi \times 275^{2} \times 840 \\ & =199569673,3 \mathrm{~mm}^{3} \\ & =199569,67 \mathrm{~cm}^{3} \end{aligned}$	(4)	M	4

| 3.5 | Volume $=\pi \times 275^{2} \times 1470 \mathrm{~mm}$
 $=349069875 \mathrm{~mm}^{3}(\div 1000)$
 $=349069,875 \mathrm{~cm}^{3}(\div 1000)$
 $=349 \ell$ | (4) | M | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3.6 | Yes, as he is getting more than 200 litres OR
 No, as he is getting more than 200 litres which would add to
 his electricity bill | (2) | M | 4 |

4.	Rhino Poaching			
4.1	1:1 For every rhino poached there is an arrest. OR 1:2 For every rhino poached, two arrests are made. OR 0:0 There are no rhinos being poached therefore no arrests need to be made. Any sensible answer.	(2)	DH	4
4.2	2011. The least number of rhinos were killed per arrests.	(2)	DH	4
4.3	$\begin{aligned} & 2,75+1,83+1,23+0,91=6,72 \\ & 6,72 \div 4 \\ & =1,68 \end{aligned}$	(3)	DH	2
4.4 4.4.1 4.4.2	$\begin{aligned} & (2,75 \times 365)+(1,83 \times 366)+(1,23 \times 365)+ \\ & (0,91 \times 365) \\ & =1003,75+669,78+448,95+332,15 \\ & =2454,63 \approx 2455 \text { OR } 2454 \\ & \text { OR } \\ & 1004+670+449+332=2455 \\ & \text { OR } \\ & 1003+669+448+332=2452 \\ & \\ & 2454,63 \times \$ 150000 \times \text { R10,61 } \\ & =\text { R3 } 906543645 \\ & =\text { R3 } 907000000 \\ & \text { OR } \\ & 2455 \times \$ 150000 \times \text { R10,61 } \\ & =\text { R3 } 907132500 \\ & =\text { R3 } 907000000 \\ & \text { OR } \\ & \text { 2454 } \times \$ 150000 \times \text { R10,61 } \\ & =\text { R3 } 905541000 \\ & =\text { R3 } 905000000 \\ & \text { OR } \\ & \text { 2452 } \times \$ 150000 \times \text { R10,61 } \\ & =\text { R3 } 902358000 \\ & =\text { R3 } 902000000 \end{aligned}$	(6) (4)	DH	3
4.5	$\begin{aligned} & 946-333 \\ & =613 \end{aligned}$	(2)	DH	2
4.6	We would hope to see a small range because that would mean that less rhinos are being killed.	(2)	DH	4
4.7	Yes. The data point lies on the zero. OR No. The increment is large and so the smaller numbers won't show on the graph.	(2)	DH	4
4.8	Any value between (and including) $13000-13500$	(2)	DH	2

	4.9	Because the number of rhinos alive has dropped to below 5000 so the number of rhinos killed will decrease as the numbers grow less and less.	(2)	DH	4
	4.10	$2025-2014=11$ years	(2)	DH	2

Total: 150 marks

