MATHEMATICAL LITERACY: PAPER II MARKING GUIDELINES

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

QUESTION 1

$$
\begin{aligned}
& \text { 1.1 Monthly repayments }=(\text { R290 } 000 \div 1000) \times 10,66 \\
& \text { = R3 091, } 40 \\
& 1.2 \text { - R290 } 000 \text { The outstanding amount is R2 992,80 and not } \\
& \text { R290 000. The initial bond was R290 000, } \\
& \text { but the missed monthly payment was } \\
& \text { R2 992,80 } \\
& \text { - Just writes R2 992,80 } \\
& -10,5 \text { The interest rate should be divided by } 100 \text {. } \\
& \text { It should also be a monthly interest rate and } \\
& \text { therefore it should also be divided by } 12
\end{aligned}
$$

- Just writes 0,00875
- Just writes 0,11
- Just writes $10,5 \%$
-16 This is the number of years and not the number of months that the money has been outstanding.
- Just writes $16 \times 12=192$
$1.3 \quad \mathrm{~B}$
Or D
1.4
1.4.1 $\frac{7,1}{100} \times 1000=71$
$\therefore 75$ is incorrect
Or

$$
\frac{75}{1000} \times 100=7,5
$$

$\therefore 75$ is incorrect
Or 7,1\%

LO 2
L 4
Reasoning
and
reflecting
LO 1
L 4
Reasoning and reflecting
(2)

L 4
Reasoning
and reflecting
LO 1
-
$\begin{array}{lll}\text { 1.4.2 } & \text { Thando presumed all the provinces had the same } & \text { LO 4 } \\ \text { number of houses or households }\end{array} \quad \begin{aligned} & \text { L 4 } \\ & \text { Or calculated the average of percentage and not the average } \\ & \text { of the homes }\end{aligned} \begin{aligned} & \text { Reasoning } \\ & \text { and }\end{aligned}$
(2)
[16]

QUESTION 2

2.1

> 2.1.1 $\begin{aligned} & (1,4 \mathrm{mg} \times 20) \div 1000000 \\ & \\ & =2,8 \times 10^{-5} \mathrm{~kg} \\ & \\ & =0,000028 \mathrm{~kg}\end{aligned}$ Or Conversion incorrect ${ }^{\mathrm{m}}$

LO 1
L3
Multi-step

$$
\begin{aligned}
2.1 .2 & (1,4 \mathrm{mg} \times 20)-(0,6 \mathrm{mg} \times 20) \\
& =16 \mathrm{mg}
\end{aligned}
$$

LO 4
L 3
Multi-step

Or

$$
\begin{aligned}
& (1,4 \mathrm{mg}-0,6 \mathrm{mg}) \times 20 \\
& =16 \mathrm{mg}
\end{aligned}
$$

Note: Mark allocation: Subtraction ${ }^{m}$
Both correct figures
X $20^{\text {m }}$
Answer

2.2	$\begin{aligned} & 2.2 .1 \quad 100 \%-25 \%-35 \% \\ & =40 \% \\ & 40 \% \times 44000 \\ & =17600 \end{aligned}$	$\begin{aligned} & \text { LO } 1 \\ & \text { L } 3 \\ & \text { Multi-step } \end{aligned}$
	OR	
	$\begin{align*} & 25 \% \times 44000=11000 \\ & 35 \% \times 44000=15400 \\ & \therefore 44000-11000-15400 \\ & =17600 \tag{3} \end{align*}$	

QUESTION 3

3.1

$$
\begin{array}{rlr}
\text { 3.1.1 Mean } & =\frac{16+19+18+\cdots 18}{16} & \begin{array}{l}
\text { LO } 4 \\
4 \times \mathrm{L} 2 \\
\text { Application } \\
\times \times \mathrm{L} 4
\end{array} \\
& =\frac{269^{\circ}}{16} & \begin{array}{l}
\text { Reasoning and reflecting }
\end{array} \\
& =16,81^{\circ} &
\end{array}
$$

Just 16,81
OR
$\frac{452}{16}=28,25$
OR
Just 252,13
(5)
3.1.2 Mode $=29$
LO 4
Greater than the mode $=5$

OR
5
OR
Correct 5 cities

3.2.1 Steenbras Lower: $87,5 \% \times 33517$ million litres $=29$ 327,375 million litres
 Steenbras Upper: 90,2\% $\times 31767$ million litres
 $=28653,834$ million litres

\therefore Steenbras Lower Dam contained more water
OR
Correct values, but divided instead of multiply

3.2.2 Picture A. The dam is $103,3 \%$ full and thus water is higher than the dam wall and so it is overflowing.

LO 1
L 4
Reasoning and reflecting

Category	Cost (in cents) per kilolitre	Number of kilolitres used	Total Cost
From 0 to $6 \mathrm{k} \mathrm{\ell}$	0,00	6	0,00
More than $6 \mathrm{k} \mathrm{\ell}$ to $15 \mathrm{k} \mathrm{\ell}$	605,62	9	$5450,58{ }^{\text {a }}$
More than $15 \mathrm{k} \mathrm{\ell}$ to $20 \mathrm{k} \mathrm{\ell}$	660,05	5	$3300,25 \sqrt{ }{ }^{\text {a }}$
More than $20 \mathrm{k} \mathrm{\ell}$ to $40 \mathrm{k} \mathrm{\ell}$	720,06	$4^{\sqrt{3}}$	$2880,24 \mathrm{Vca}$
More than $40 \mathrm{k} \mathrm{\ell}$	750,03	0	0,00
Totalkilolitres used and cost (excluding VAT)			$11631,07 \mathrm{Vca}$
		VAT	1628,3498 va
Total Owing (in cents)			$13259,4198 \checkmark \mathrm{ca}$
Total Owing (in Rands and cents)			R132,59 Vca

LO 1
$6 \times \mathrm{L} 3$
Multi-step
$2 \times \mathrm{L} 4$
Reasoning
and
reflecting

OR

Category	Cost (in cents) per kilolitre	Number of kilolitres used	Total Cost
From 0 to $6 \mathrm{k} \ell$	0,00	6	0,00
More than $6 \mathrm{k} \ell$ to $15 \mathrm{k} \mathrm{\ell}$	605,62	9	R54,51 ${ }^{3}$
More than $15 \mathrm{k} \ell$ to $20 \mathrm{k} \ell$	660,05	5	R33,00 ${ }^{3}$
More than $20 \mathrm{k} \ell$ to $40 \mathrm{k} \ell$	720,06	4 V	R28,80 $\mathrm{Va}_{\mathrm{ca}}$
More than $40 \mathrm{k} \ell$	750,03	0	R0,00
Totalkilolitres used and cost (excluding VAT)			R116,31 ${ }^{\text {ca }}$
		VAT	R16,28 $\mathrm{ca}^{\text {a }}$
Total Owing (in cents)			$13259,4198 \mathrm{ra}$
Total Owing (in Rands and cents)			R132,59

Note: 7 marks only (final mark lost due to rounding)

QUESTION 4

4.1 Accepted range of measurement: 65-69 mm (6,5-6,9 cm)

LO 3
L 3
Multi-step

Ratio Method:

$$
\begin{aligned}
& 65 \mathrm{~mm}: 433 \mathrm{~km} \\
& 65 \mathrm{~mm}: 433 \mathrm{~km} \times 1000000 \\
& 65 \mathrm{~mm}: 433000000 \mathrm{~mm} \\
& 1 \mathrm{~mm}: 433000000 \mathrm{~mm} \div 65^{\mathrm{m}} \\
& 1 \mathrm{~mm}: 6661538,46 \mathrm{~mm} \\
& 1: 7000000
\end{aligned}
$$

Division Method:

$$
\begin{aligned}
433 \mathrm{~km} \times 1000000 & =433000000 \mathrm{~mm} \div 65 \mathrm{~mm} \\
& =6661538,46 \\
& =7000000
\end{aligned}
$$

\therefore Scale: $1: 7000000$

Measurement	Pre-rounded answer
$65 \mathrm{~mm}(6,5 \mathrm{~cm})$	6661538,46
$66 \mathrm{~mm}(6,6 \mathrm{~cm})$	6560606,06
$67 \mathrm{~mm}(6,7 \mathrm{~cm})$	6462686,57
$68 \mathrm{~mm}(6,8 \mathrm{~cm})$	6367647,06
$69 \mathrm{~mm}(6,9 \mathrm{~cm})$	6275362,32

OR
$1: 7000000$ or $1: 6000000$
4.2 Accepted Range of measurement: 89 - 94 mm

$$
(8,9-9,4 \mathrm{~cm})
$$

Ratio Method:

1: 6000000
89 mm : $6000000 \times 89 \mathrm{~mm}$
89 mm : 534000000 mm
89 mm : $534000000 \mathrm{~mm} \div 1000000$
89 mm : 534 km

Multiplication Method:

$89 \mathrm{~mm} \times 6000000=534000000 \mathrm{~mm} \div 1000000$

$$
=534 \mathrm{~km}
$$

Measurement	$\mathbf{1 : 6 0 0 0} \mathbf{0 0 0}$	$\mathbf{1 : 7 0 0 0} \mathbf{0 0 0}$
$89 \mathrm{~mm}(8,9 \mathrm{~cm})$	534 km	623 km
$90 \mathrm{~mm}(9,0 \mathrm{~cm})$	540 km	630 km
$91 \mathrm{~mm}(9,1 \mathrm{~cm})$	546 km	637 km
$92 \mathrm{~mm}(9,2 \mathrm{~cm})$	552 km	644 km
$93 \mathrm{~mm}(9,3 \mathrm{~cm})$	558 km	651 km
$94 \mathrm{~mm}(9,4 \mathrm{~cm})$	564 km	658 km

OR

Using raw (non-rounded scale values):
(e.g. using 6661 538,46 instead of 7000 000)

OR
Ratio scale method:

	Map	Real-life
$\div 65$	65 mm	433 km
$\times 89$	89 mm	
		$\approx 593 \mathrm{~km}$

4.3 75 BWP $\times 9$ people $\times 9$ day
$=6075 \mathrm{BWP} \div 0,9057 \mathrm{BWP} / \mathrm{R}$
$=$ R6 707,52

OR: $\quad \times 0,9057$ (Max 5 marks only)
OR: $\quad \div \mathbf{0 , 9 7 2 3}$ (Max 5 marks only)
OR: $\times \mathbf{0 , 9 7 2 3}$ (Max 4 marks only)

LO 3
$3 \times$ L 3
Multi-step
$2 \times \mathrm{L} 4$
Reasoning and reflecting

LO 3

$4 \times$ L 3
Multi-step
$2 \times$ L 4
Reasoning and reflecting
4.4 4.4.1 If one does not exchange any money, then no commission can be charged.
OR: Any indication that no commission was charged

4.4.2 There is a fixed minimum charge

OR: Any indication of a constant / steady amount (e.g. no change)
NOT: There was no commission charged OR The same amount of money was exchanged
4.4.3 R57,50
4.4.4 There is a constant charge for commission

OR: Any indication of a constant / steady rate (e.g. steady increase / increased by same amount, etc.)
OR: Direct proportion / relationship
NOT: There was a positive increase OR any comment on increase without the sense of understanding a constant rate

$$
\begin{array}{ll}
\text { 4.4.5 } & R 157,25 \times \frac{100}{1,85}=R 8500 \\
& \text { OR } \\
\frac{1,85}{100} \times R 8500=R 157,25 \\
\text { OR } \\
\frac{R 157,25}{0,0185}=R 8500 \\
\text { OR } \\
\frac{R 157,25}{R 5800} \times 100=1,85 \%
\end{array}
$$

$4.53 \times(50 \% \times \mathrm{R} 250)=3 \times \mathrm{R} 125=\mathrm{R} 375,00$
$1 \times(25 \% \times \mathrm{R} 250)=1 \times \mathrm{R} 62,50=\mathrm{R} 62,50$
$5 \times \mathrm{R} 250=5 \times \mathrm{R} 250=\underline{\mathrm{R} 1250,00}$ R1 687,50
4.6

4.6.1	A	2
	B	29
	C	5
	D	6
	E	5
	F	12

LO 2
L 4
Reasoning and reflecting

LO 2
L 4
Reasoning and reflecting
(2)

LO 2
L 4
Reasoning and reflecting

LO 2

L 4
Reasoning and reflecting

LO 1
L 4
Reasoning and reflecting
LO 4
L 3
Multi-step
4.6.2 (a) $\frac{16}{45}$

LO 4
L 2
Application

LO 4
(b) $\frac{21}{45} \quad=0.47$
(c) $\frac{5}{45} \quad \times 100=11.1 \%$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{V} & =\pi \times \mathrm{r}^{2} \times \mathrm{h} \\
& =3,14 \times(3 \mathrm{~cm})^{2} \times 12 \mathrm{~cm} \times \frac{3}{4} \times 45 \text { passengers } \times 3 \text { cups } \\
& =339,12 \mathrm{~cm}^{3}(339,29 \text { with } \pi) \times \frac{3}{4} \times 45 \text { passengers } \times 3
\end{aligned} \\
& \text { cups } \\
& \begin{aligned}
&=34335,9 \mathrm{~cm}^{3}(34353,32 \text { with } \pi) \\
& \text { No. of litres }=34335,9 \mathrm{~cm}^{3} \div 1000 \mathrm{~cm}^{3 \mathrm{~m}} \\
&=34,3359 \ell(34,35332 \text { with } \pi)
\end{aligned} \\
& \text { No. of } 2 \ell \text { bottles }
\end{aligned} \begin{aligned}
& =34,3359 \ell \div 2 \ell \mathrm{~m} \\
& =17,16795(17,18 \text { with } \pi) \\
& =18 \text { bottles }
\end{aligned}
$$

QUESTION 5

$5.1 \quad$ 5.1.1

LO 3

$$
\begin{aligned}
& \text { Area to be painted }=(15 \mathrm{~mm} \times 180 \mathrm{~mm} \times 2)+ \\
& (60 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2)+(180 \mathrm{~mm} \times 60 \mathrm{~mm})+ \\
& ((180 \mathrm{~mm}-40 \mathrm{~mm}-30 \mathrm{~mm}) \times 60 \mathrm{~mm}) \\
& =5400 \mathrm{~mm}^{2}+1800 \mathrm{~mm}^{2}+10800 \mathrm{~mm}^{2}+6600 \mathrm{~mm}^{2} \\
& =24600 \mathrm{~mm}^{2}
\end{aligned}
$$

OR
Can be calculated into cm^{2} and then converted.

5.1.2	Area to be painted	LO 3
		$2 \times$ L 3

\therefore Bongani's statement is incorrect

OR

Area to be painted

$$
\begin{aligned}
& =(5 \mathrm{~cm} \times 6 \mathrm{~cm})+ \\
& (1 / 2 \times 4 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2) \\
& =30 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2} \\
& =42 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Bongani's statement is incorrect

$$
\text { 5.1.3 Total Area } \begin{aligned}
& =\text { Part A }+ \text { Part B }+ \text { Part C } \\
& =24600 \mathrm{~mm}^{2}+5400 \mathrm{~mm}^{2}+4200 \mathrm{~mm}^{2 \mathrm{~m}} \\
& =34200 \mathrm{~mm}^{2}
\end{aligned}
$$

LO 3
L 2 Application

NOTE Must add the figures from the questions 5.1.1 and 5.1.2.
5.1.4

$$
\begin{aligned}
& 34200 \mathrm{~mm}^{2} \div 1000000{ }^{\mathrm{m}} \\
& =0,0342 \mathrm{~m}^{2} \\
& 5 \mathrm{~m}^{2} \div 0,0342 \mathrm{~m}^{2} \\
& =146,1988304 \times 5 \ell^{\mathrm{m}} \\
& =730,994 \ldots \\
& =730 \text { trucks }
\end{aligned}
$$

\therefore yes he has enough paint
OR
$5 \mathrm{~m}^{2} \times 1000000 \times 5 \ell^{\mathrm{m}}$
$=25000000 \mathrm{~mm}^{2} \div 34200 \mathrm{~mm}^{2} \mathrm{~m}$
$=730,994 \ldots$
$=730$ trucks
\therefore yes he has enough paint
OR

$$
\frac{34200}{1000000}=0,0342 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& \therefore 700 \text { trucks }=0,0342 \times 700 \\
& =23,94 \mathrm{~m}^{2}
\end{aligned}
$$

OR

OR

$$
\begin{aligned}
23,94 \mathrm{~m}^{2} \div 5 \mathrm{~m}^{2} & =4,79 \ell \quad 5 \times 5=25 \mathrm{~m}^{2} \\
& \approx 5 \ell
\end{aligned}
$$

\therefore yes he has enough paint

> Be aware of $65 \mathrm{~m}^{2} \div 0,03 \mathrm{~m}^{2}$ $=2166$ trucks

5.2
 5.2.1
 Amount in Rand
 OR: Income, expense and profit (All three must be there)

5.2.2
(a) Expenses OR: Cost
(b) Income
(c) Profit OR: Loss

LO 2
L 4
Reasoning and reflecting
(d) $\quad-\mathrm{R} 180$ or -180
5.2.3
(a) $\mathrm{I}=\mathrm{R} 20 \times \mathrm{t}$
(b) $\mathrm{E}=\mathrm{R} 180+\mathrm{R} 8 \times \mathrm{t}$

OR: Can be in words
5.2.4

$$
\begin{aligned}
& I=E^{m} \\
& R 20 \times t=R 180+R 8 \times t \\
& 20 t=180+8 t \\
& 20 t-8 t=180 \\
& 12 t=180 \\
& t=15
\end{aligned}
$$

OR

Trial and error

- Correct Method, but not correct answer ${ }^{\mathrm{mm}}$

OR

Profit = R20 - R8 = R12

$$
\begin{equation*}
\therefore \frac{\mathrm{m} 180}{\mathrm{R} 12}=15 \tag{4}
\end{equation*}
$$

5.2.5 $\quad \mathrm{P}=\mathrm{I}-\mathrm{E}$

$$
\begin{aligned}
& =(R 20 \times t)-(R 180+R 8 \times t) \\
& =(R 20 \times 16)-(R 180+R 8 \times 16)^{m} \\
& =R 12
\end{aligned}
$$

OR
1 truck above breakeven point, so R12 profit ${ }^{m}$
LO 2
L 4
Reasoning and reflecting

LO 2

Multi-step
$4 \times$ L 4
Reasoning and reflecting

LO 2
L 4
Reasoning and reflecting

LO 2
L 4
Reasoning and reflecting

