

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2012

MATHEMATICAL LITERACY: PAPER I

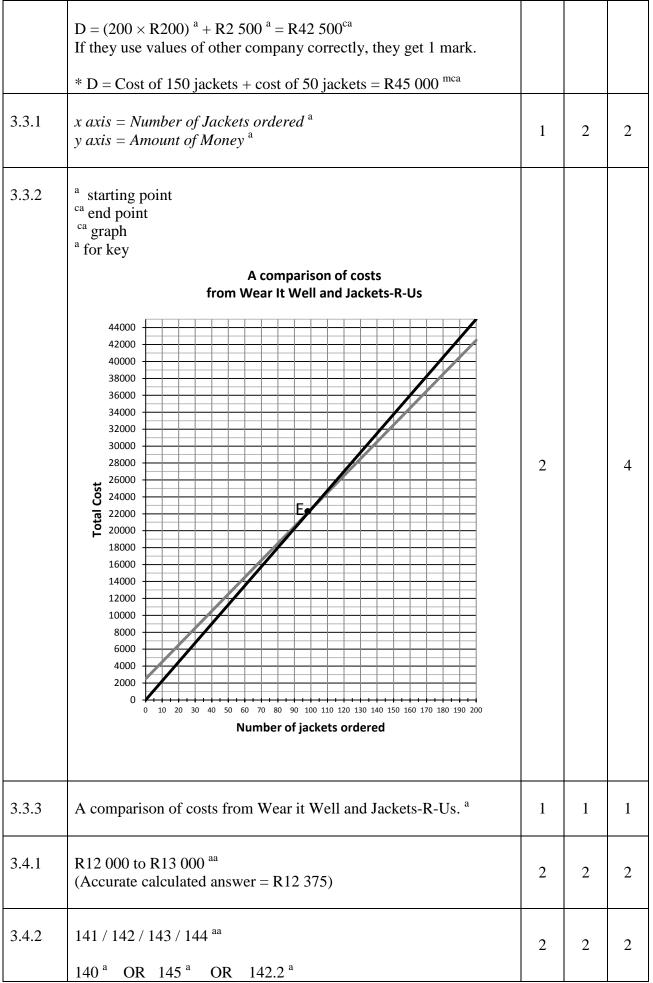
MARKING GUIDELINES

Time: 3 hours

150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.


TL = Thinking Level AO = Answer Only MA = Mark Allocation

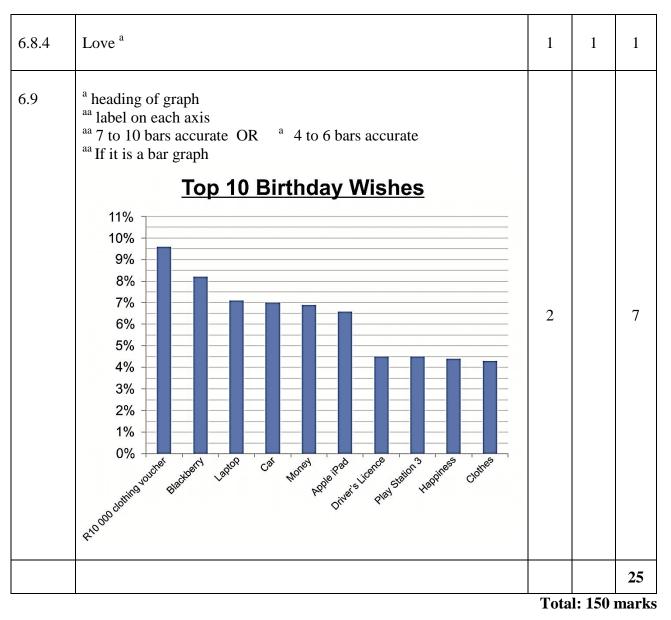
	Give full marks for answers only, unless question stipulates.	TL	AO	MA
	QUESTION 1			
1.1.1	$\frac{4}{5} \times 23^{2} + 1,8$ $\frac{4}{5} \times 529 + 1,8$ $423,2 + 1,8$ $= 425$ ^m Any part of calculation correct ^a Final answer correct	1	2	2
1.1.2	= R122,50 *Penalise decimal. Must have zero showing place value ^m for multiplying ^{ca} for final answer	1	2	2
1.2	= 595 g Penalise unit. ^m Calculating $15\% \times 700 = 105$ g OR $85\% \times 700$ ^{ca} Subtracting to get final answer *If they increase or decrease by $15\% : 1$ mark	1	2	2
1.3	a $\frac{128}{100}$ a $\frac{32}{25}$ or $1^{7}/_{25}$ *If they attempt to simplify it further only 1 mark. $\frac{28}{100}$ m m	1	2	2
1.4	= 8: 1 or 1:0,125 (Unit form) ^m Dividing both sides by a common factor ^a Final answer (Can be written in a fraction) Must show : 1	1	2	2
1.5	24 min × 4 ^a or $24 \times 12 \div 3^{a}$ = 96 minutes ^{ca} OR 1,6 hrs OR 1hr 36 min	1	2	2

1.6	$0.2 \times 60^{m} = 12$ 12 hours 12 minutes ^a			
	*732 min : 1 mark *12hrs 20 min : 0 marks if no working *12hrs 2 min : 0 marks if no working	1	2	2
1.7	$= R482,85 \qquad \text{Method } 1: \frac{R550,45}{114\%} = R482,85 \\ OR \\ ^{\text{m}} \text{ dividing} \qquad \text{Method } 2: R550,45 \times \frac{100}{114} = R482,85 \\ OR \\ ^{\text{m}} 114\% \qquad \text{Method } 3: \frac{R550,45}{1,14} = R482,85 \\ ^{\text{a}} \text{ Final answer OR} \\ \text{Method } 4: x \times 114\% = R550,45 \\ x = \frac{R550,45}{114\%} \\ x = R482,85 \\ OR \\ \text{Method } 5: 100\% \div 114\% \times R550,45 \\ = R482,85 \\ ^{\text{*}}\text{NOTE: If the learners calculate } 14\% \text{ of } R550,45 \text{ and then subtract they only get 1 method mark! But ONLY if they show working.} [R550,45 - 77,063 = R473,39] \\ ^{\text{*}}\text{If they show only VAT : 0 marks.} \\ \end{array}$	2	3	3
1.8	$R1,15 \times 30 = R34,50$ ^m × 30 ^a Final answer *If a dozen is 6, then R1,15 × 15 ^m = R17,25 *12,5 × R1,15 : 0 marks *2,5 × R1,15 = R2,89 : 0 marks	1	2	2
1.9	R17,99 × 4 = R71,96 ^a R36,99 × 2 = R73,98 ^a 10 kg = R74,99 The 2,5 kg is the best buy. Option 1. ^a OR R17,99 ÷ 2,5 = R7,20/kg ^a R36,99 ÷ 5 = R7,40 /kg ^a R74,99 ÷ 10 = R7,50 /kg The 2,5 kg is the best buy. Option 1.(Spar) ^a	3		3

1.10	> $27^{\circ} \le 28 \ ^{\circ}C^{aa}$ Final correct answer ^m if answer between 20 and 30 e.g. 24	1	2	2
1.11.1	$25_{\text{m}} \div 2,2 = 11,36 \text{ kg}$ (Rounding not penalised)	2	2	2
	*If multiplying (55kg) : 0 marks			
1.11.2	92 kg – 11,4 kg = 80,64 kg ^{ca} from previous answer OR 92 kg – 11 kg = 81 kg ^{ca} from previous answer OR 92 kg – 11 kg = 81,6 kg ^{ca} from previous answer	1	1	1
1.11.3	^{ca} from previous answer. If between 80kg and 81kg ^{am} If between 80kg and 90kg ^m	1	2	2
1.12	 4,1 cm × 50 000 = 205 000 cm 205 000 cm ÷ 100 000 = 2,05 km ^m for dividing, even if it's the incorrect number of zeros ^a Final answer *NOTE: If they don't know how many cm in a km they cannot get 3 marks. 	1	3	3
1.13.1	= 8 ^a Final correct answer	1	1	1
1.13.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	2
	at @ 2012		ASE TH	

1.12.3	House on beachfront – 3 Bedrooms – Pool House on beachfront – 4 Bedrooms – Pool House two blocks from beachfront – 3 Bedrooms – Pool House two blocks from beachfront – 4 Bedrooms – Pool (ANY TWO) ^a each correct one *If sentences not complete then 1 mark. *If they write only "3 bed or 4 bed" : 0 marks.	1	2	2
		TI	4.0	37
	QUESTION 2	TL	AO	MA
2.1	True ^a	1	1	1
2.2	True ^a	1	1	1
2.3	True OR False ^a	1	1	1
2.4.1	False ^a	1	1	1
2.4.2	True ^a	1	1	1
2.5.1	False ^a	1	1	1
2.5.2	False ^a	1	1	1
2.5.3	False ^a	1	1	1
2.5.4	False ^a	1	1	1
2.5.5	False ^a	1	1	1
2.5.6	False ^a	1	1	1
2.5.7	True ^a	1	1	1
2.5.8	True ^a	1	1	1
	OUESTION 2	TL	10	13 MA
3.1	QUESTION 3 A = Wear It Well ^a B = Jackets-R-Us ^a *If A = Wear It Well ^a OR A = Jackets-R-Us B = Wear It Well B = Jackets-R-Us ^a	1	AO 2	2
3.2	$C = 50 \times R225^{m} = R11\ 250^{ca}$ If they use values of other company correctly, they get 1 mark. $(50 \times R200 = R1\ 000)$	2	5	5

		-		
3.4.3	Company A: Wear It Well ^{ca} (according to their graphs) The line representing ' <i>Wear it Well</i> ' is below the line representing Jackets-R-Us ^{ca} (Any correct suitable explanation) *If they state reason being because of no fixed price: 0 marks.	2		2
3.4.4	90 - 110 ^a Labelling point E on Graph ^a (See 3.3.1 above)	2		2
3.5	$R225 - R75 = R150^{a}$ $\frac{R150}{R75 \checkmark^{a}} \times 100\% \checkmark^{m} = 200\%^{ca}$	2	4	4
3.6.1	$A = 3\ 000(1 + 5\%.\ 1) \qquad substitution \qquad n = 1^{a}$ $A = R3\ 150^{ca}$ *Note: If $n = 12$, $A = R4\ 800\ (2\ marks)$ *If compound interest formula used correctly: ^{ca}	2	3	3
3.6.2	R3 150 \div 12 ^a = R262,50 ^{ca} *R4800 \div 12 ^a = R400 ^{ca}	2	2	2
				31
	QUESTION 4	TL	10	MA
4.1.1	1111,9 feet × 0,305 = 339,1295m ^{m a} = 339 m ^r *1111,9 \div 0,305 = 3645,57 ^a \approx 3646 ^r	1	AO 3	3
4.1.2	$339 \text{ m} \div 4,13 \text{ m} = 82,08 \text{ cars}^{\text{m}}$ 82 / 83 cars ^{ca} * 3646 ÷ 4,13 ^m ≈ 882 / 883 ^{ca}	1	2	2
4.2	$40 \text{ km/h} \times 24 \text{ h}^{\text{m}} = 960 \text{ km}^{\text{a}}$	2	2	2
4.3	113 m ² \div 11,3 m ^m = 10 m ^a *If thgey show L × B : ^m	2	2	2
		1	1	1
IEB Copyrig	bht © 2012	PLE	ASE TUE	RN OVER


PLEASE TURN OVER

4.4.1	$22\ 000 - 1\ 900 = 20\ 100\ ^{a}$			
4.4.2	$20 100 \times R7,92340^{m} = R159 260,34^{ca}$ *If cents dropped, still 2 marks. *If conversion decimals dropped: $20 100 \times R7,29 = R159 192^{m}$		2	2
4.5.1	$R32,95 \times 5400^{a} = R177\ 930^{ca}$		2	2
4.5.2	11 500 × 340 m ℓ^{m} = 3 910 000 m ℓ^{a} = 3 910 ℓ^{ca} * Students are expected to know that 1 000 m ℓ = 1 ℓ	2	3	3
4.5.3 (a)	A = 5 700 ℓ - 4 900 ℓ ^a or ^m = 800 ℓ ^a	1	2	2
(b)	c ^a per correct value / point Litres of Milk available at the beginning of each day 6000 60	2	3	7
4.6.1	12 ^a	2		1
4.6.2	H^{a} 35 and 36 ^a OR H^{a} 20 and 21 ^a	2	2	2

IEB Copyright © 2012

4.7	SE ^a	1	1	1
				30
	QUESTION 5	TL	AO	M A
5.1	P = 145cm + 145cm + 75cm + 75cm m P = 440 a cmu accept 4 400 mm or 4,4 m	1	3	3
	*If perimeter of border = 460cm : 2 marks			
5.2	Method 1: $440 \text{ cm} \div^{\text{m}} 2,5 \text{ cm}^{\text{a (converting)}} = 176$ $176 + 4^{\text{a}} = 180 \text{ tiles}^{\text{ca}}$ Method 2: $145 \text{ cm} \div 2,5 \text{ cm}^{\text{a}} = 58 \text{ tiles} \times 2 = 116$ $75 \text{ cm} \div 2,5 \text{ cm} = 30 \text{ tiles} \times 2 = 60 \text{ tile}$		4	4
	Method 3: Area of Border \div Area of Tile = 180	20		
	1125 ^a \div ^m 6,25 ^a = 180 ^{ca} Method 4: 80 \div 2,5 = 32			
	$\begin{array}{c} 150 \div 2,5 = 52 \\ 150 \div 2,5 = 60 \\ (32 + 60) \times 2^{m} = 184 \ ^{ca} - 4 \ ^{a} = 180^{ca} \end{array}$			
	*Inside border = 172 tiles			
5.3	Method 1: $180 \times 2^{m} = 360$ tiles ^{ca} $360 + 8^{a} = 368$ tiles ^{ca}			
	Method 2: $145 \text{ cm} + 5 \text{ cm}^{a} = 150 \text{ cm}$ $150 \text{ cm} \div 2,5 \text{ cm} = 60 \text{ tiles} \times 2 = 120$ 75 cm + 5 cm = 80 cm $80 \text{ cm} \div 2,5 \text{ cm} = 32 \text{ tiles} \times 2 = 64 \text{ tiles}$ 120 tiles + 64 tiles = 184 tiles $184 + 180 + 4^{\text{ma}} = 368 \text{ tiles}^{\text{ca}}$		5	5
	Method 3: Area of two borders = $13 \ 175 \text{cm}^{2 \text{ a}}$ Area of mirror = $10 \ 875 \ \text{cm}^{2}$ $13 \ 175 \text{cm}^{2} - {}^{\text{m}}10 \ 875 \ \text{cm}^{2}$ = $2300 \text{cm}^{2\text{ca}} \div {}^{\text{m}} \ 6,25 \text{cm}^{2}$ = 368^{ca}			
5.4	368 tiles $\div 20 = 18,4^{ca}$ She will need 19 boxes. ^{ca (round up)}	1	2	2
				14

	QUESTION 6	TL	AO	M A
6.1	7242 ^a	1	1	1
6.2	Feb – March ^a 2011 ^a Accept Feb <u>or</u> March	1	2	2
6.3	$22 - 8 = 14^{a}$	2	2	2
6.4	McDonalds ^a	1	1	1
6.5	Nike ^a	1	1	1
6.6.1	KwaZulu-Natal ^a	1	1	1
6.6.2	Gauteng ^a	1	1	1
6.6.3	Free State ^a	1	1	1
6.7	$ \begin{array}{l} 100\% - (39.6 + 25.1)^{m} \\ = 35.3\%^{a} \end{array} $	1	2	2
6.8.1	Cellphone ^a	1	1	1
6.8.2	'Mxit ^a and Bible ^a	1	2	2
6.8.3	$\approx 6.2\%^{aa}$ 6.1 to 6.4% ^{aa} 6 ^a OR 6.5 ^a	1	2	2

