basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RD	Reading from a table/graph/diagram/map
SF	Correct substitution in a formula
O	Opinion/Example Reason / Explanation /Deduction /Comment / Interpretation
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off/Reasoning
NP	No penalty for rounding off/units

This memorandum consists of 20 pages.

QUESTION 1 [34 MARKS]			
Ques	Solution	Explanation	Level
1.1.1	Gross monthly salary of one driver $\begin{aligned} & \quad \checkmark \mathrm{A} \quad \checkmark \mathrm{MA} \\ &= \mathrm{R} 734,53 \times 52 \div 12 \\ &= \text { R3 } 182,96 \end{aligned}$ OR Weekly salary of one driver $\begin{aligned} & \checkmark \mathrm{A} \quad \checkmark \mathrm{MA} \\ &= \mathrm{R} 3 \\ & 182,96 \times 12 \div 52 \\ &= \mathrm{R} 734,53 \end{aligned}$	1 A using the correct value 1MA dividing by 12 and multiplying by 52 OR 1 A using the correct value 1MA dividing by 52 and multiplying by 12	L2
		(2)	
1.1.2	$\text { Salary of one cleaner }=8 \times \stackrel{\checkmark}{ } \mathrm{M} \text { 20 } \times \mathrm{R} 18,66=\mathrm{R} 2985,60^{\checkmark} \mathrm{CA}$ Salary of one supervisor $=$ R2 985,60 + R230,00 $=$ R3 ${ }^{\checkmark} 215,60$ Salaries: Handymen $=11 \times \mathrm{R} 4410,37=\mathrm{R} 48514,07 \quad \checkmark \mathrm{~A}$ Cleaners $=272 \times \mathrm{R} 2985,60=\mathrm{R} 812083,20 \quad \checkmark \mathrm{CA}$ Supervisors $=12 \times \mathrm{R} 3215,60=\mathrm{R} 38587,20 \quad \checkmark \mathrm{CA}$ Drivers $=11 \times \mathrm{R} 3182,96=\mathrm{R} 35012,56 \quad \checkmark \mathrm{CA}$ Total salaries $\begin{aligned} & =\text { R48 514,07 + R } 812083,20+\mathrm{R} 38587,20+\mathrm{R} 35012,56 \\ & =\mathrm{R} 934197,03 \quad \checkmark \mathrm{CA} \quad \checkmark \mathrm{~A} \\ & \text { Total UIF payable }=2 \% \times \mathrm{R} 934 \begin{array}{l} 197,03 \\ = \end{array} \quad \mathrm{R} 18 \text { 683,94 } \quad \checkmark \mathrm{CA} \end{aligned}$	1M multiplying hours, days and rate 1CA salary of 1 cleaner 1CA salary of 1 supervisor 1A salaries Handymen 1CA salaries Cleaners 1CA salaries supervisors 1CA salaries drivers 1CA Total salaries 1A 2% contribution 1CA total contribution OR	L3

Ques	Solution	Explanation	Level
1.1.3	The statement is VALID. $\checkmark \mathrm{O}$ OR $\begin{aligned} & \text { Mean salary }=\frac{\text { R934 197,03 }}{306} \checkmark \mathrm{MA} \\ & =\text { R3 052,93 } \end{aligned}$ Mean as a percentage of the lowest salary $\begin{aligned} & \frac{\mathrm{R} 3052,93}{\mathrm{R} 2985,60} \times 100 \%=102,255 \ldots \% \\ & \% \text { difference }=102,255 \ldots \%-100 \% \\ & \approx 2,3 \% \\ & \approx \mathrm{M} \\ & \approx \mathrm{CA} \end{aligned}$ The statement is VALID $\checkmark \mathrm{O}$ $\begin{aligned} & \text { OR } \\ & \text { Mean UIF payable }=\frac{\mathrm{R} 18683,93}{306} \stackrel{\mathrm{MA}}{=} \quad \begin{array}{r} \checkmark \mathrm{CA} \\ 61,05859 \ldots \\ \text { Cleaners UIF } \end{array} \times 100 \% \\ & \% \text { difference }=\frac{\text { Mean UIF }- \text { Cleaners UIF }}{} \end{aligned}$ $\begin{aligned} & =\frac{61,05859 \ldots-59,711985 \ldots}{59,711985 \ldots} \times 100 \% \\ & =2,255 \ldots \% \\ & \approx 2,3 \% \end{aligned}$ The statement is VALID.	1MA dividing total salary from Q1.1.2 by number of employees 1CA simplification 1M difference 1CA percentage calculation 1CA percentage 10 conclusion OR 1MA dividing total salary from Q1.1.2 by number of employees 1CA simplification 1M percentage 1 M subtracting 100% 1CA percentage 10 conclusion OR 1MA dividing total UIF from Q1.1.2 by number of employees 1CA simplification 1M subtracting 1M percentage 1CA simplification 10 conclusion OR	L4

1.2.1	Number of additional employees is $11+12+272+11=\begin{aligned} & \checkmark \mathrm{A} \\ & 306\end{aligned}$ $\begin{aligned} \text { Number of female cleaners } & =\frac{3}{4} \times 272 \\ & =204 \quad \checkmark \mathrm{~A} \end{aligned}$ Probability of selecting a female cleaner $\begin{aligned} & =\frac{204}{306} \quad \checkmark \mathrm{CA} \\ & =0,66666 . . \\ & \approx 0,667 \quad \checkmark \mathrm{R} \end{aligned}$	1A addition 1A proportion 1CA probability 1 R rounding correctly Answer only full marks	L2
1.2.2	Most unlikely, because the male supervisors are the smallest number of additional employees. $\checkmark \checkmark$ O OR The fraction for the male supervisors is $\begin{equation*} \text { smaller }\left(\frac{3}{306}=0,0098039\right) \checkmark \checkmark \mathrm{O} \tag{2} \end{equation*}$	2 O explanation	L2
1.3.1		1RT reading from table 1 M finding \% 1 A value of A 1 M dividing 1 A value of B OR 1 M dividing 1A value of B Accept R5 000 NP - rounding Answer only full marks	L2

QUESTION 2 [30 MARKS]			
Ques	Solution	Explanation	Level
2.1.1	$\begin{aligned} & \mathrm{P}_{(\text {weight loss more than } 20 \mathrm{~kg})}=\frac{\checkmark \mathrm{A}}{12} \times 100 \% \\ & \approx 66,67 \% \end{aligned}$	1A numerator 1A denominator 1CA probability as \%$\|$NP - rounding Answer only full marks	L2
		(3)	
2.1.2	$\begin{aligned} & 102 \text { pounds }=102 \times 0,453592 \approx 46,27 \mathrm{~kg} \\ & 55 \text { pounds }=55 \times 0,453592 \approx 24,95 \mathrm{~kg} \checkmark \checkmark \mathrm{C} \\ & 36 \text { pounds }=36 \times 0,453592 \approx 16,33 \mathrm{~kg} \end{aligned}$ Arranged weight loss for males: $\begin{aligned} & 13,2 ; 13,2 ; 16,33 ; 16,7 ; 18,8 ; 23,7 ; \\ & \mathbf{2 4 , 9 5 ; 2 5 , 6 ; 3 1 , 6 ; 3 7 , 6 5 ; 4 3 , 3 6 ; 4 6 , 2 7 .} \begin{array}{r} \checkmark \mathrm{CA} \\ \text { Median weight loss of males } \end{array}=\frac{23,70+24,95}{2} \checkmark \mathrm{M} \\ & =24,325 \\ & \approx 24,33 \mathrm{~kg} \quad \checkmark \mathrm{CA} \end{aligned}$ Her statement is NOT correct. $\checkmark \mathrm{O}$	1 C converting one 1C converting other two 1 CA arranging weights 1CA identifying middle values 1 M median concept 1CA simplification 10 conclusion Max 4 marks if using SA males only Max 3 marks if conversions are omitted	L4
		(7)	
2.1.3	IQR for males $($ in kg$)=34,63-16,52=18,11 \checkmark \mathrm{~A}$ IQR for females $($ in kg$)=64,87-27,97=36,9 \checkmark \mathrm{~A}$ The female IQR is more than the male IQR. $\checkmark \checkmark$ R	1M IQR concept 1A males IQR 1 A females IQR 2Rcomment relating to the IQR values	$\begin{aligned} & \hline \text { L2 } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	
2.2.2		1A calculating calories 1M ratio 1 M addition 1CA calculating calories 1CA difference NP - rounding	L3
2.2.3	Sugar intake before diet: $\begin{aligned} & =7,75 \times 2+7,25+10,5 \quad \checkmark \mathrm{MA} \\ & =33,25 \text { tsp. OR } \quad 133 \text { grams } \quad \checkmark \mathrm{CA} \end{aligned}$ Sugar intake after diet: $\begin{aligned} & =2 \times\left(\frac{500 \times 3,25}{240}\right)+2+0 \\ & \checkmark \checkmark \mathrm{~A} \\ & =2 \times 6,77+2+0,00 \\ & =15,54 \text { tsp. OR } 62,16 \text { grams } \quad \checkmark \mathrm{CA} \\ & \% \text { Reduction of sugar } \\ & \begin{array}{\|l\|l\|l} \hline \text { (using teaspoons) } & \text { (usings grams) } \\ \hline=\frac{15,54}{33,25} \times 100 \% & \text { OR } & =\frac{62,16}{133} \times 100 \% \\ \approx 46,74 \% \quad \checkmark \mathrm{MA} & \approx 46,74 \% \\ \mathrm{MA} \end{array} \\ & \hline \end{aligned}$ NOT VALID \checkmark O OR Using Calories from Q 2.2.2 $\begin{gathered} \checkmark \mathrm{M} \checkmark \mathrm{CA} \quad \checkmark \mathrm{M} \\ \% \text { Calories }=\frac{248,67}{532 \checkmark \mathrm{~A}} \times 100 \%=46,7 \% \quad \checkmark \mathrm{CA} \end{gathered}$ NOT VALID \checkmark O	1MA adding correct values 1CA simplification 1A sugar in vitamin water 1CA simplification 1MA percentage 10 opinion Accept VALID as opinion only if an explanation provided OR 1CA total calories after 1M percentage 1 M multiply by 100 1 CA simplification 1A total calories before 10 opinion	L4
		[30]	

QUESTION 3 [31 MARKS]			
Ques	Solution	Explanation	
3.1	$\checkmark \sqrt{ } \mathrm{O}$ For easy access OR to save on costs OR no privacy required OR aesthetic value OR ease of movement between rooms OR ventilation purposes	2 O explanation (2)	L4
3.2	Living room, bathroom and bedroom 2 . $\checkmark \checkmark \mathrm{O}$ No direct sunlight into the room. OR The sun's position is on the northern side of the house. $\checkmark \checkmark \mathrm{O}$	1A identified at least two rooms 2 O reason	$\begin{aligned} & \hline \text { L2 } \\ & \text { L4 } \end{aligned}$
3.3.1	The living room floor side OR $\checkmark \mathrm{MA}$ $\quad \checkmark \mathrm{MA} \checkmark \mathrm{C} \quad \checkmark \mathrm{M}$ $100 \%-7,04 \%=92,96 \%$ $=3,550 \mathrm{~m}-(3,550 \mathrm{~m} \times 7,04 \%)$ Side $\checkmark \mathrm{C} \quad \checkmark \mathrm{M}$ $=3,3008 \mathrm{~m}$ $=3,550 \mathrm{~m} \times 92,96 \%$ $\approx 3,3 \mathrm{~m}$ $=3,3008 \mathrm{~m}$ $\therefore 3,3 \mathrm{~m} \times 3,3 \mathrm{~m}$ $\therefore 3,3 \mathrm{~m} \times 3,3 \mathrm{~m}$	1C conversion 1MA for subtracting 1M multiplication	L2
3.3.2	Area of 4 walls $\begin{aligned} & \quad \begin{array}{l} \checkmark \mathrm{SF} \\ =4 \times(3,3 \mathrm{~m} \times 2,650 \mathrm{~m}) \\ =34,98 \mathrm{~m}^{2} \\ \checkmark \mathrm{CA} \end{array} \end{aligned}$ Area of 2 door openings $\begin{aligned} & =2 \times \text { length } \times \text { width } \\ & =2 \times 2,032 \mathrm{~m} \times 0,750 \mathrm{~m}^{\vee \mathrm{M}} \\ & =3,048 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ Area of opening to passage $=\text { length } \times \text { width }$ $=2,082 \mathrm{~m} \times 0,75 \mathrm{~m} \checkmark \mathrm{M}$ $=1,5615 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA}$ Area of window $\begin{aligned} & =1,511 \mathrm{~m} \times 0,949 \mathrm{~m} \checkmark \mathrm{M} \\ & =1,434 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ Area to cover with panelling $\begin{aligned} & =(34,98-3,048-1,5615-1,434) \mathrm{m}^{2} \checkmark \mathrm{M} \\ & =28,9365 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ & \approx 29 \mathrm{~m}^{2} \checkmark \mathrm{R} \end{aligned}$	1 SF area wall dimensions 1CA area of 4 walls 2 M door opening dimensions 1CA area of opening to passage 1CA 2 door openings 1M window dimensions 1CA area of window 1M subtracting 1CA area 1 R rounding	L3
	OR	OR	

Ques	Solution	Explanation
	Area of northern wall $\begin{aligned} & =\text { Area of wall }- \text { area of door } \quad \checkmark \mathrm{M} \\ & =(3,3 \mathrm{~m} \times 2,650 \mathrm{~m})-(2,082 \mathrm{~m} \times 0,750 \mathrm{~m}) \\ & =8,745 \mathrm{~m}^{2}-1,5615 \mathrm{~m}^{2} \\ & =7,1835 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ Area of eastern wall $\begin{aligned} & =\text { Area of wall - area of door } \quad \checkmark \mathrm{M} \\ & =(3,3 \mathrm{~m} \times 2,650 \mathrm{~m})-(2,032 \mathrm{~m} \times 0,750 \mathrm{~m}) \\ & =8,745 \mathrm{~m}^{2}-1,524 \mathrm{~m}^{2} \\ & =7,221 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ Area of southern wall $=$ Area of wall - area of door - area of window $\quad \checkmark \mathrm{M} \quad \checkmark \mathrm{A}$ $=(3,3 \mathrm{~m} \times 2,650 \mathrm{~m})-(2,032 \mathrm{~m} \times 0,750 \mathrm{~m})-(1,511 \mathrm{~m} \times 0,949 \mathrm{~m})$ $=8,745 \mathrm{~m}^{2}-1,524 \mathrm{~m}^{2}-1,434 \mathrm{~m}^{2}$ $=5,787 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA}$ Area of western wall $\begin{aligned} & =(3,3 \mathrm{~m} \times 2,650 \mathrm{~m}) \\ & =8,745 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \text { Area to cover } \quad \checkmark \mathrm{M} \\ & =7,1835 \mathrm{~m}^{2}+7,221 \mathrm{~m}^{2}+5,787 \mathrm{~m}^{2}+8,745 \mathrm{~m}^{2} \\ & =28,9365 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ & \approx 29 \mathrm{~m}^{2} \checkmark \mathrm{R} \end{aligned}$ OR Area of wall including door and window openings $=$ perimeter of floor \times height $=2 \times($ width + width $) \times$ height $=2 \times(3,3 \mathrm{~m}+3,3 \mathrm{~m}) \times 2,650 \mathrm{~m} \quad \checkmark \mathrm{M}$ $=34,98 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA}$ Area of window 1 opening $=$ length \times breadth $\checkmark \mathrm{M}$ $=1,511 \mathrm{~m} \times 0,949 \mathrm{~m}$ $=1,433939 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA}$ $\begin{aligned} & \text { Area of 2 door openings } \quad \begin{array}{l} \text { Area of opening to passage } \\ =2 \times \text { length } \times \text { width } \end{array}=\text { length } \times \text { width } \\ & =2 \times 2,032 \mathrm{~m} \times 0,750 \mathrm{~m} \checkmark \mathrm{M} \\ & =3,048 \mathrm{~m}^{2}=\sqrt{1}, 5615 \mathrm{~m}^{2} \end{aligned} \quad=2,082 \mathrm{~m} \times 0,75 \mathrm{~m} \checkmark \mathrm{M}$ $\begin{aligned} & \text { Area to cover } \\ & =34,98 \mathrm{~m}^{2}-1,433939 \mathrm{~m}^{2}-3,048 \mathrm{~m}^{2}-1,5615 \mathrm{~m}^{2} \\ & =28,936561 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \\ & \approx 29 \mathrm{~m}^{2} \quad \checkmark \mathrm{R} \end{aligned}$	1 M subtracting areas 1CA for calculating area of northern wall 1 M subtracting areas 1CA for calculating area of eastern wall 1 M subtracting areas 1A subtracting 1CA for calculating area of southern wall 1CA for calculating area of western wall 1 M for adding 4 walls 1CA simplification 1 R rounding OR 1M multiplying 1CA calculating total area of walls 1M area formula 1CA calculating area of window 2M area formula 2CA calculating area of door openings 1 M for subtracting 1CA simplification 1 R for rounding

Ques	Solution	Explanation	
3.4	Surface area of one panel $=2 \mathrm{~m} \times 0,15 \mathrm{~m}$ $=0,3 \mathrm{~m}^{2}$	1A area	L4
	$\begin{aligned} & \text { Number of panels needed }=\frac{29 \mathrm{~m}^{2}}{0,3 \mathrm{~m}^{2}} \\ & =96,666 \ldots \approx 97 \end{aligned}$	1CA from Q3.3.2 simplification	
	Total panels needed to be purchased $\begin{aligned} & =97 \times 104,5 \% \\ & =101,365 \quad \checkmark \mathrm{CA} \\ & \approx 102 \end{aligned}$ OR $\begin{gathered} 97 \times 4,5 \%=4,365 \\ \approx 5 \\ 97+5=102 \vee \mathrm{CA} \end{gathered}$	1CA number of panels 1 R rounding	
	$\begin{aligned} & \text { Volume of } 102 \text { panels }=102 \times 0,0125 \mathrm{C} \times 0,3 \mathrm{~m}^{2} \quad \checkmark \mathrm{SF} \\ & =0,3825 \mathrm{~m}^{3} \quad \checkmark \mathrm{CA} \end{aligned}$	1C convert to metre 1SF finding volume 1CA volume in m^{3}	
	$\begin{array}{lll} \text { Cost of panels excluding } & \text { OR } & \begin{array}{l} \text { Price of wood including } \\ \text { VAT } \end{array} \\ \text { VAT } \\ =0,3825 \times \text { R5 000,00 } & =\text { R5 } 000 \text { per m } \\ =\text { R1 } 912,50 \checkmark \text { CA } & =\text { R5 } 700 \text { per m } \\ 3 \\ \text { VCA } \end{array}$	1CA cost excluding VAT	
	Cost of the panels including VAT Cost of the panels including $=1,14 \times$ R1 912,50 $=$ R2 $180,25 \checkmark$ CA VAT $=$ R5 $700 \times 0,3825$ = R2 $180,25 \checkmark$ CA	1CA cost incl. VAT	
	$\begin{aligned} \text { Labour cost } & =29 \times \mathrm{R} 125,00 \\ & =\mathrm{R} 3625,00 \quad \checkmark \mathrm{CA} \end{aligned}$	1CA labour cost (CA area from 3.3.2)	
	$\begin{aligned} \text { Total cost } & =\text { R2 180,25 }+ \text { R3 } 625,00 \\ & =\text { R } 5805,25 \quad \checkmark \mathrm{CA} \end{aligned}$	1CA total cost	
	Budget is ENOUGH \checkmark O	10 conclusion	
	OR	OR	

Ques	Solution	Explanation	
	$\begin{aligned} & \text { Surface area of wood }=29 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ & \begin{aligned} \checkmark \mathrm{M} \end{aligned} \\ & \begin{aligned} \text { Volume of wood } & =29 \mathrm{~m}^{2} \times 0,0125 \mathrm{~m} \quad \checkmark \mathrm{~A} \\ & =0,3625 \mathrm{~m}^{3} \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ $\begin{aligned} \text { Total volume of wood } & =0,3625 \times 104,5 \% \quad \checkmark \mathrm{M} \\ & =0,3788125 \mathrm{~m}^{3} \checkmark \mathrm{CA} \\ & =0,38 \mathrm{~m}^{3} \checkmark \mathrm{CA} \end{aligned}$ $\begin{array}{lll} \text { Cost of panels excluding } & \text { OR } & \begin{array}{l} \text { Price of wood including } \\ \text { VAT } \end{array} \\ \text { VAT } \\ =0,38 \times \text { R5 000,00 } & =\text { R5 } 000 \text { per m} \times 114 \% \\ =\text { R1 } 900,00 \checkmark \text { CA } & =\text { R5 } 700 \text { per m }{ }^{3} \checkmark \text { CA } \end{array}$ Cost of the panels including VAT $=1,14 \times$ R1 900,00 $=\mathrm{R} 2166,00 \quad \checkmark \mathrm{CA}$ Labour cost $=29 \times$ R125,00 $=\mathrm{R} 3625,00 \quad \checkmark \mathrm{CA}$ $\begin{aligned} \text { Total cost } & =\text { R2 166,00+ R3 625,00 } \\ & =\text { R5 791,00 } \quad \checkmark \mathrm{CA} \end{aligned}$ Budget is ENOUGH \checkmark O	1CA from 3.3.2 1 M calculating volume 1A correct thickness 1CA simplification 1M \% increase 1CA simplification 1CA rounding 1CA cost excluding VAT 1CA cost incl. VAT 1CA labour cost (CA area from 3.3.2) 1CA total cost 10 conclusion NP - rounding	
		[31]	

QUESTION 4 [31 MARKS]			
Ques	Solution	Explanation	
4.1.1	- Course modules have different costs OR - Course levels makes a difference. $\checkmark \checkmark$ O	2 O relevant reason OR 2 O relevant reason	L4
4.1.2	Single rooms: - Have more privacy and is more convenient; no disturbance. OR - Better facilities. $\quad \checkmark \checkmark \mathrm{O}$ $\text { OR } \quad \checkmark \checkmark \mathrm{O}$ Double rooms: - Are not private and not convenient. $\quad \checkmark \checkmark \mathrm{O}$ OR - Students share costs $\checkmark \checkmark \mathrm{O}$	2 O relevant reason	L4
4.1.3	Total fees for first year $\begin{aligned} & =\text { Tuition fees }+ \text { hostel fees }+ \text { non-SA citizen fee } \\ & \checkmark \text { A } \\ & =\text { R28 } 470+\text { R18 } 928+\mathrm{R} 2000 \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 49398 \quad \checkmark \mathrm{CA} \end{aligned}$	1 A all the values 1 M adding fees 1CA total No penalty if deposit added	L2
4.1.4	Minimum payment on registration: Cost $=$ appl. fee $+30 \%$ of tuition + non-SA additional + accommodation dep. + monthly residence fee $$	1 A using correct amounts 1 M adding amounts 1S tuition fee 1S accommodation fee 1CA minimum payment No penalty if deposit subtracted	L3

Ques	Solution	Explanation	
4.2	Afrikaans Home Language is excluded because it is the lowest: $\begin{aligned} & \text { LO APS }=\frac{92}{2} \checkmark \text { MA } \\ & =46 \% \text { rounded up to } 50 \% \\ & \quad \Rightarrow \text { LO will be allocated 4 APS } \checkmark \mathrm{A} \end{aligned}$ Total APS based on final results: $\begin{aligned} & =6+5+4+6+7+7+7 \\ & =42 \quad \checkmark \mathrm{CA} \end{aligned}$ $\checkmark \mathrm{CA}$ She qualifies for $\mathbf{5 0 \%}$ bursary.	1MA calculating \% of LO 1 R rounding up 1A LO APS 1CA adding scores 1CA total 1CA identifying bursary \%	L3
4.3.1	Distance from Okahandja to Johannesburg $=$ Windhoek to Pretoria + Okahandja to Windhoek + Pretoria to Johannesburg $+2 \times$ Gabarone $\begin{aligned} & \quad \checkmark \mathrm{MA} \\ & =(1386+68+58+2 \times 45) \mathrm{km} \\ & =1602 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \text { Driving time }=\frac{\text { Total distance }}{\text { Average speed }} \\ & =\frac{1602 \mathrm{~km}}{108 \mathrm{~km} / \mathrm{h}} \\ & =14,8333 \mathrm{hrs} \quad \mathrm{OR} \approx 14 \text { hours } 50 \text { minutes } \end{aligned}$ Distance from Okahandja to Johannesburg $\begin{aligned} & =[68+1107+2(45)+279+58] \mathrm{km} \\ & =1602 \mathrm{~km} \checkmark \mathrm{CA} \\ & \text { Driving time }=\frac{\text { Total distance }}{\text { Average speed }} \\ & =\frac{1602 \mathrm{~km}}{108 \mathrm{~km} / \mathrm{h}} \end{aligned}$ $=14,8333 \mathrm{hrs} \quad \mathrm{OR} \approx 14 \text { hours } 50 \text { minutes }$	1MA adding extra kilometres 1MA return on Gabarone 1CA total distance 1SF substitution 1CA Total time OR 2MA for adding the distances to travel 1CA total distance 1SFsubstitution 1CA total time	L2

Ques	Solution	Explanation	
4.3.2	Strip charts are not drawn to scale. $\quad \checkmark \checkmark \mathrm{O}$	2 O for any valid explanation	L4
4.3.3	Her estimation is NOT VALID. $\checkmark \mathrm{O}$ OR NAD $2160=2160 \times 0,998$ Rand $\checkmark \mathrm{M}$ $=\text { R2 155,68 } \checkmark \mathrm{CA}$ Total cost in Pula $=680 \times 3+50+50+20=\mathrm{P} 2160 \checkmark \mathrm{CA}$ Total cost in Rand $=2160 \times 1,2454$ $=2690,06 \checkmark \mathrm{CA}$ Her estimation is NOT VALID. \checkmark O	1 A adding values 1CA total 1 M converting P to R 1CA amount 1CA amount 10 conclusion OR 1 M converting NAD to Rand 1CA amount in Rand 1A adding values 1CA total 1CA cost amount 10 conclusion NP - rounding	L4
		[31]	

Ques	Solution	Explanation	
5.2.2	North America'sdifference ≈ 1010 million tons -410 million tons $=600$ million tons $/ \mathrm{CA}$ Asia'sdifference ≈ 1080 million tons -380 million tons $=700 \text { million tons } \quad \checkmark \mathrm{CA}$ Asia has a higherdifference of crude oil than North Americal J OR Asia consumes much more crude oil than North America.	1CA for calculating North American difference [Accept values in range of ± 10 million tons.] 1CA for calculating Asia's difference 1J comment Penalise with one mark if millionsomitted	L2
5.2.3	They both have vibrant economies, therefore these regions need a lot more energy. $\checkmark \checkmark$ O OR Both regions have more industries. $\checkmark \checkmark \mathrm{O}$ OR The regions have large populations. $\checkmark \checkmark$ O OR They use large volumes of oil because they have outdated $\checkmark \checkmark$ O technology. OR First world regions $\checkmark \checkmark$ O Developed regions $\checkmark \checkmark$ O OR	2 O reason	L4
5.3.1	$\begin{aligned} \text { Distance in } \mathrm{km} & =33 \mathrm{~mm} \div 25 \stackrel{\vee \mathrm{~mm}}{\stackrel{\mathrm{M}}{\times}} \times 5000 \mathrm{~km} \\ & =6600 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \text { Distance in miles }=6600 \mathrm{~km} \div 1,609344 \\ &=4101,049869 \text { miles } \checkmark \mathrm{CA} \\ & \approx 4101,05 \mathrm{miles} \end{aligned}$ Accept measured distance from 27 to 29 mm and bar scale from 22 to 24 mm	1 M for using the line scale 1CA for calculating distance 1CA for distance in miles	L3

Ques	Solution	Explanation	
5.3.2			L2
	$\begin{aligned} & \stackrel{\checkmark \text { RD }}{=} 15 \text { million barrels } \times \frac{100 \%}{30 \%} \\ & \checkmark \mathrm{MA} \\ & =50 \text { million barrels per day } \end{aligned}$ OR $30 \% \sim 15$ million barrels $30 \% \sim 15$ million barrels \checkmark RD $30 \% \sim 15$ million barrels $10 \% \sim \frac{15}{3} \text { million barrels }=5 \text { million barrels }$ Therefore $100 \% \sim(15+15+15+5)$ million barrels $=50$ million barrels $\checkmark \mathrm{CA}$	1RD reading 15 million barrels 1MA dividing by 30% 1CA simplification OR 1RD reading 15 million barrels 1 M calculating 10% 1CA simplification No penalty if millions omitted	
5.3.3	It is not the shortest route OR It will take longer to transport the oil OR It will cost more to transport the oil. $\checkmark \checkmark \mathrm{O}$	2 O relevant (time or distance related reason 2 O relevant cost related reason	L4
		[24]	
		TOTAL:150	

