

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

.....

MATHEMATICAL LITERACY P2

NOVEMBER 2013

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
А	Accuracy
CA	Consistent accuracy
С	Conversion
J	Justification (Reason/Opinion)
М	Method
MA	Method with accuracy
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
0	Own opinion/Example
NPR	No penalty for rounding

This memorandum consists of 22 pages.

QUESTION 1 [24 MARKS] Oues Solution **Explanation** AS 12.1.2 Amount of juice (in litres) 1.1 L2 $=\frac{400 \text{ kg}}{2.5 \text{ kg}} \qquad \checkmark M$ 2,5 kg makes 1 ℓ 400 kg makes $\frac{400 \text{ kg}}{2,5 \text{ kg}/\ell}$ M OR 1M dividing by 2,5 ✓A = 160 = 160 ℓ ✓ A 1A simplification Number of 5ℓ bottles Number of 5ℓ bottles OR $=\frac{160\,\ell}{5\,\ell}$ $=\frac{160\,\ell}{5\,\ell}$ = 32 ✓CA = 32 ✓CA OR 1:2,5=x:4002,5x = 400 $x = \frac{400}{2.5} \qquad \checkmark M$ $x = 160 \qquad \checkmark A$ 1M using proportion 1A simplification Number of 5ℓ bottles $= \frac{160 \ell}{5\ell}$ = 32 ✓CA 1CA simplification OR OR ✓A 5 ℓ juice is made from 5 \times 2,5 kg = 12,5 kg fruit 1A mass of fruit \therefore Number of 5 ℓ bottles = $\frac{400 \text{ kg}}{12,5 \text{ kg}}$ \checkmark M 1M dividing by 12,5 = 32 ✓CA 1CA simplification OR OR $\frac{400 \text{ kg}}{5\ell} = 80 \text{ kg}/\ell \quad \checkmark \text{A}$ Number of 5ℓ bottles = $\frac{80 \text{ kg}/\ell}{2,5 \text{ kg}/\ell} = 32 \checkmark \text{CA}$ 1A using proportion 1M dividing by 2,5 1CA simplification **Correct answer only:** full marks (3)

Ques	Solution	Explanation	AS
			12.3.1
1.2.1	Radius (in mm) = $\frac{90}{2}$ = 45 \checkmark A	1A value of radius	L2
	Surface area (in mm ²) = $4 \times 3,14 \times 45^2$ \checkmark SF	1SF substitution	
	= 25 434 ✓CA	1CA simplification Accept 25 446,90 using π	
		Using diameter max 2 marks NPR	
		Correct answer only: full marks	
		(3)	
		CA from 1.2.1	12.3.1
1.2.2	Volume (in mm ³) = $\frac{4}{3} \times 3,14 \times 45^3$ \checkmark SF	1SF substitution	L2
	$= 381\ 510$ \checkmark CA	1CA simplification	
		Accept 381 703,51 using π NPR	
		Correct answer only: full marks	
		(2)	
1.3	Radius of basket = $\frac{30}{2}$ = 15 cm \checkmark A	1A radius of basket	12.3.1 12.1.2
	Volume of basket = $3,14 \times (15 \text{ cm})^2 \times 25 \text{ cm}^{\circ}$ SF	1SF substitution	L3(6)
	$= 3,14 \times (150 \text{ mm})^2 \times 250 \text{ mm} \checkmark \text{C}$ = 17 662 500 mm ³ \sqrt{CA}	1C converting to mm 1CA volume of basket	L4(1)
		Accept 17 671 458,68 using π	
	The number of oranges = $\frac{17662500 \text{ mm}^3 - 113040 \text{ mm}^3}{381510 \text{ mm}^3} \sqrt{M/C}$	1M/A subtracting space	
	= 46	1 M dividing by volume of an orange CA from 1.2.2	
	\therefore Franz's statement is not correct \checkmark CA	1CA conclusion	
	OR	OR	

Ques	Solution	Explanation	AS
	OR		
	Radius of basket = $\frac{30}{2}$ = 15 cm \checkmark A	1A value of radius	
	Volume of basket = $3,14 \times (15 \text{ cm})^2 \times 25 \text{ cm}$ = 17 662,5 cm ³ \checkmark CA	1SF substitution 1CA volume of basket Accept 17 671,46 using π	
	The number of oranges = $\frac{17662,5 \text{ cm}^3 - 113040 \text{ mm}^3}{381510 \text{ mm}^3} \checkmark \text{M}$	1M dividing by volume of an orange	
	$17662.5 \text{ cm}^3 - 113.040 \text{ cm}^3 \checkmark \text{M}$	1M subtracting space	
	$= \frac{17662,5 \mathrm{cm^3} - 113,040 \mathrm{cm^3}}{381,51 \mathrm{cm^3}} \sqrt[6]{\mathrm{C}}$ $= 46$	1C converting to cm	
	(46 > 44) \therefore Franz's statement is not correct \checkmark CA	1CA conclusion	
	OR	OR	
	Radius of basket = $\frac{30}{2}$ = 15 cm \checkmark A Volume of basket = 3.14 × (15 cm) ² × 25 cm \checkmark SF	1A radius of basket 1SF substitution	
	Volume of basket = $3,14 \times (15 \text{ cm})^2 \times 25 \text{ cm}$ = $3,14 \times (150 \text{ mm})^2 \times 250 \text{ mm}$ $\checkmark C$ = $17\ 662\ 500\ \text{mm}^3$ $\checkmark CA$	1C converting to mm 1CA volume of basket	
	Space in the basket for oranges (in mm ³) = $17\ 662\ 500 - 113\ 040 = 17\ 549\ 460$ \checkmark M	1M subtracting space	
	Space occupied by oranges (in mm ³) = 381 510 mm ² × 44 = 16 786 440 mm ² \checkmark A	1A calculating the space occupied by the oranges	
	(∴ there is space for more oranges) ∴ Franz's statement is not correct ✓CA	1CA conclusion	
		Correct conclusion only: 1 mark	
		(7)	

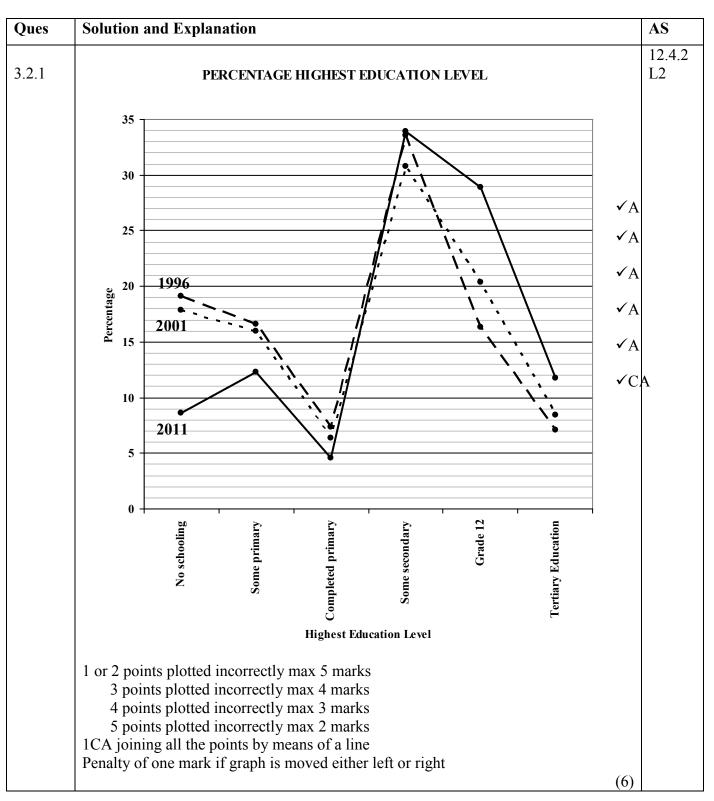
Ques	Solution	Explanation	AS
			12.1.1
1.4	Trailer length \checkmark C = 394 × 2,54 cm = 1 000,76 cm OR 10,0076 m	1C conversion	12.3.2
		1C conversion	12.3.1
	Trailer breadth \checkmark C = 119 × 2,54 cm = 302,26 cm OR 3,0226 m		L2(1)
			L3(3)
	Option 1: Maximum number of boxes packed lengthwise along the		L4(4)
	breadth of the trailer:		
	$=\frac{302,26}{30} \checkmark M \qquad \qquad OR \qquad =\frac{3,0226}{0,3} \checkmark M \\=10,075 \qquad \qquad =10,075$	1M dividing	
	= 10,075 = 10,075		
	$\approx 10 \qquad \qquad \approx 10$		
	Maximum number of boxes packed breadthwise along the		
	length of the trailer:		
	$=\frac{1000,76}{21,5} \qquad \qquad \mathbf{OR} \qquad =\frac{10,0076}{0,215}$		
	= 46,54 $\approx 46 \qquad \checkmark R \qquad = 46,54$ $\approx 46 \qquad \checkmark R$	1R rounding down	
	Maximum number of howes of eranges $= 10 \times 46$		
	Maximum number of boxes of oranges = 10×46 = 460 \checkmark CA	1CA maximum	
		number of boxes	
	Option 2: Maximum number of boxes packed breadthwise along the		
	breadth of the trailer:		
		1M dividing	
	$\begin{array}{c} 21,5 \\ = 14,05 \\ \end{array} = 14,05 \\ = 14,05 \\ \end{array}$		
	$\approx 14 \qquad $		
	Maximum number of hoves neeked lengthwise along the		
	Maximum number of boxes packed lengthwise along the length of the trailer:		
	$=\frac{1000,76}{30} \qquad \qquad \mathbf{OR} =\frac{10,0076}{0,3}$		
	$= 33,35 \\ \approx 33 \qquad \checkmark R \qquad = 33,35 \\ \approx 33 \qquad \checkmark R$	1R rounding down	
	Maximum number of boxes = 33×14	, č	
	$= 462 \qquad \checkmark CA$	1CA maximum	
		number of boxes	
	\therefore OPTION 2 is the best \checkmark CA	1CA conclusion	
	OD.		
	OR		

length $\checkmark C$ $\approx 2,54 \text{ cm} = 1\ 000,76 \text{ cm}$ OR 10,0076 m breadth $\checkmark C$ $\approx 2,54 \text{ cm} = 302,26 \text{ cm}$ OR 3,0226 m $\approx 2,54 \text{ cm} = 24\ 003 \text{ cm}$ OR 240,03 m $\approx 2,54 \text{ cm} = 24\ 003 \text{ cm}$ OR 240,03 m $\approx 10,235 = 10,214 \approx 10$ 1: um number of boxes packed lengthwise along the of the trailer: $\checkmark M$ $\frac{6}{-} = 10,075 \approx 10$ um number of boxes packed breadthwise along the of the trailer: $\frac{76}{5} = 46,54 \approx 46 \checkmark R$	OR 1C conversion 1C conversion 1M dividing 1R rounding down	
$2,54 \text{ cm} = 1\ 000,76 \text{ cm} \mathbf{OR} 10,0076 \text{ m}$ breadth ✓C $2,54 \text{ cm} = 302,26 \text{ cm} \mathbf{OR} 3,0226 \text{ m}$ $2,54 \text{ cm} = 24\ 003 \text{ cm} \mathbf{OR} 240,03 \text{ m}$ r of layers of boxes = $\frac{240,03}{0,235} = 10,214 \approx 10$ 1: um number of boxes packed lengthwise along the of the trailer: $\frac{\sqrt{M}}{6^{-}} = 10,075 \approx 10$ um number of boxes packed breadthwise along the of the trailer:	1C conversion 1M dividing	
x 2,54 cm = 302,26 cm OR 3,0226 m x 2,54 cm = 24 003 cm OR 240,03 m r of layers of boxes = $\frac{240,03}{0,235}$ = 10,214 ≈ 10 1: um number of boxes packed lengthwise along the of the trailer: $\frac{240,03}{0,235}$ = 10,214 ≈ 10 um number of boxes packed lengthwise along the of the trailer:	1M dividing	
r of layers of boxes = $\frac{240,03}{0,235}$ = 10,214 \approx 10 1: um number of boxes packed lengthwise along the of the trailer: $\frac{7M}{6}$ = 10,075 \approx 10 um number of boxes packed breadthwise along the of the trailer:		
1: um number of boxes packed lengthwise along the of the trailer: $\frac{2}{M} = 10,075 \approx 10$ um number of boxes packed breadthwise along the of the trailer:		
um number of boxes packed lengthwise along the of the trailer: \sqrt{M} $\frac{6}{2} = 10,075 \approx 10$ um number of boxes packed breadthwise along the of the trailer:		
um number of boxes packed breadthwise along the of the trailer:		
of the trailer:	1R rounding down	
$\frac{76}{5} = 46,54 \approx 46 \checkmark R$	1R rounding down	
r of boxes to be packed in this option $10 \times 46 = 4600$ \checkmark CA	1CA total number of boxes	
2: um number of boxes packed breadthwise along the of the trailer: M		
$\frac{6}{5} = 14,05 \approx 14$	1M dividing	
of the trailer:		
$-=33,35\approx 33$	IK rounding down	
33 × 10	1CA total number of	
	1CA conclusion Correct conclusion	
	um number of boxes packed lengthwise along the of the trailer: $\frac{76}{2} = 33,35 \approx 33$ $\checkmark R$ r of boxes to be packed in this option 33×10 $0 \checkmark CA$ TION 2 is the best. $\checkmark CA$	of the trailer: $\frac{76}{7} = 33,35 \approx 33 \checkmark R$ 1R rounding down $1 \text{r of boxes to be packed in this option}$ 33×10 $1 \text{CA total number of boxes}$ $1 \text{CA total number of boxes}$ 1CA conclusion

	TION 2 [26 MARKS]		1.6
Ques	Solution	Explanation	AS
		NOTE: No variable	12.2.1
2.1.1		(symbol or words),	L3(2)
	Amount claimed (in rand)	NO marks	
	\checkmark A \checkmark A		
	= 4,67 \times number of kilometres travelled	1A correct fuel tariff 1A multiplying tariff	
	OR	in rand by number of	
		kilometres travelled	
	= 467 cents \times number of kilometres travelled		
	OR		
	$\checkmark A \qquad \checkmark A$		
	= $467 \times \text{number of kilometres travelled} \div 100$		
	OR		
	\sqrt{A}		
	Amount claimed (in rand) = $4,67 \times n$ where n = number of kilometres travelled $\checkmark A$		
	where it indinoer of knohledes travened VA		
	OR		
	\checkmark A		
	Amount claimed (in rand) = $467 \text{ cents} \times n$ where n = number of kilometres travelled $\checkmark A$		
		(2)	
0.1.0	Amount claimed (in rand) = $4.67 \times 1.960 \text{ VSF}$	1SF substitution in	12.2.1
2.1.2	Amount claimed (in rand) = $4,67 \times 1960 \checkmark SF$	formula from Q 2.1.1	L4(3)
	= 9 153,20 ✓CA	1CA simplification	
	\therefore The amount claimed by Rodney was incorrect . \checkmark CA	1CA conclusion	
	OR	OR	
	✓M ✓A	1M concept	
	The rate of claim used = $\frac{9430}{1960} = 4,8112$	1A calculated rate	
	(4,8112 is more than the correct rate of 4,67)	1CA conclusion	
	\therefore The amount claimed by Rodney was incorrect . \checkmark CA		
	OR	OR	
	Number of kilometres claimed = $\frac{9430}{4,67}$ \checkmark M \checkmark A (2019 27) is more than the 1960 km travelled)		
	Number of kilometres claimed = $\frac{9430}{467}$ = 2019,27	1M concept	
	(2019,27 is more than the 1960 km travelled.)	1A number of km	
	\therefore The amount claimed by Rodney was incorrect . \checkmark CA	1CA conclusion	1
		Correct conclusion	
		only: 1 mark	4

(3)

Ques	Solution	Explanation	AS
2.2.1	Petrol cost (in rand) = $1960 \times 1,013 = 1.985,48$	M/A 1M/A petrol cost	12.1.1 L2
	Maintenance cost (in rand) = $450 + 125 + 500 + 200$	= 1 275 1M/A maintenance	
	Monthly cost (in rand) = 1 985,48 + 1 275 = 3 260,4	$48 \checkmark CA \qquad 1CA monthly cost$	
	OR	OR	
	Monthly cost (in rand) $\checkmark M/A$ = (450 + 125 + 500 + 200) + 1 960 × 1,013 $\checkmark M/A$ = 1 275 + 1 985,48 = 3 260,48 $\checkmark CA$	A 1M/A maintenance 1M/A petrol cost 1CA monthly cost Correct answer only: full marks (3)	
		(5)	12.2.1
2.2.2	Finding remaining amount using the 1,5 ℓ vehicle: OctClaim amount $\checkmark M$ $\checkmark N$ = 2994 cents × 1 960 kmOR= R2,994 × 1 960= 586 824 cent= R5 868,24 $\checkmark CA$ = R5 868,24 $\checkmark CA$	1 M multiplying the tariff with distance1 M multiplying the tariff with distance1 CA1 CA claim amount	12.1.1 L2(3) L3(3) L4(3)
	Remaining amount = R5 868,24 - R3 260,48 $\checkmark M$ = R2 607,76 $\checkmark CA$	A 1M subtracting the monthly cost (Q2.2.1) from a calculated claim amount 1CA remaining amount	
	Finding remaining amount using the 2,3 ℓ vehicle: Nov		
	Petrol cost (in rand) = $1960 \times 1,317 = 2581,31 \checkmark M$		
	Maintenance cost (in rand) = $700 + 210 + 800 + 450$	$= 2 \frac{\sqrt{M/A}}{160}$ 1M/A maintenance	
	Monthly cost (in rand) = $2581,31 + 2160 = 4741$	1,32 \checkmark CA 1CA monthly cost	
	Using CORRECT claim Using RODNEY amount:	<u>Y's</u>	
	Remaining amountRemaining amount $= R9 \ 153, 20 - R4 \ 741, 32$ OR $= R4 \ 411, 88$ $\checkmark CA$ $= R4 \ 688, 68$	1CA remaining	
	\therefore Difference in remaining amounts \therefore Difference in remaining amounts $=$ R4 411,88 - R2 607,76 $=$ R1 804,12 \checkmark CA $=$ R4 688,68 - R $=$ R2 080,92	ounts 2 607,76 1CA difference	


Ques	Solution	Explanation	AS
			12.1.3
2.3	<i>i</i> = 9% pa <i>n</i> = 24 months A = R104 753,89 $x = \frac{R104753,89 \times \frac{9\%}{12}}{\left[\left(1 + \frac{9\%}{12} \right)^{24} - 1 \right]} \xrightarrow{\checkmark} A$ = R4 000 ✓CA	1A interest rate per month [Note: do not penalise if % sign is omitted but calculation is done correctly] 1SF substitution 1A number of months 1CA simplification	L3
	OR	OR	
	$x = \frac{\text{R104753,89} \times \frac{0.09}{12}}{\left[\left(1 + \frac{0.09}{12} \right)^{24} - 1 \right]} \checkmark \text{SF}$	1A interest rate per month 1SF substitution 1A number of months	
	$=$ R4 000 \checkmark CA	1CA simplification	
	OR	OR	
	$x = \frac{R104753,89 \times 0,0075}{\left[\left(1 + \frac{0,09}{12} \right)^{24} - 1 \right]^{\sqrt{A}}} \checkmark SF$	1A interest rate per month 1SF substitution 1A number of months	
	$x = R4\ 000$ \checkmark CA	1CA simplification	
	OR	OR	
	$x = \frac{\text{R104753,89} \times 0.01}{[(1+0.01)^{24} - 1]} \checkmark \text{SF} \checkmark \text{A}$ x = R3 883,59 \sqcac{CA}{CA}	1A interest rate per month (NPR) 1SF substitution 1A number of months 1CA simplification NPR	
		Correct answer only: full marks	
		(4)	1

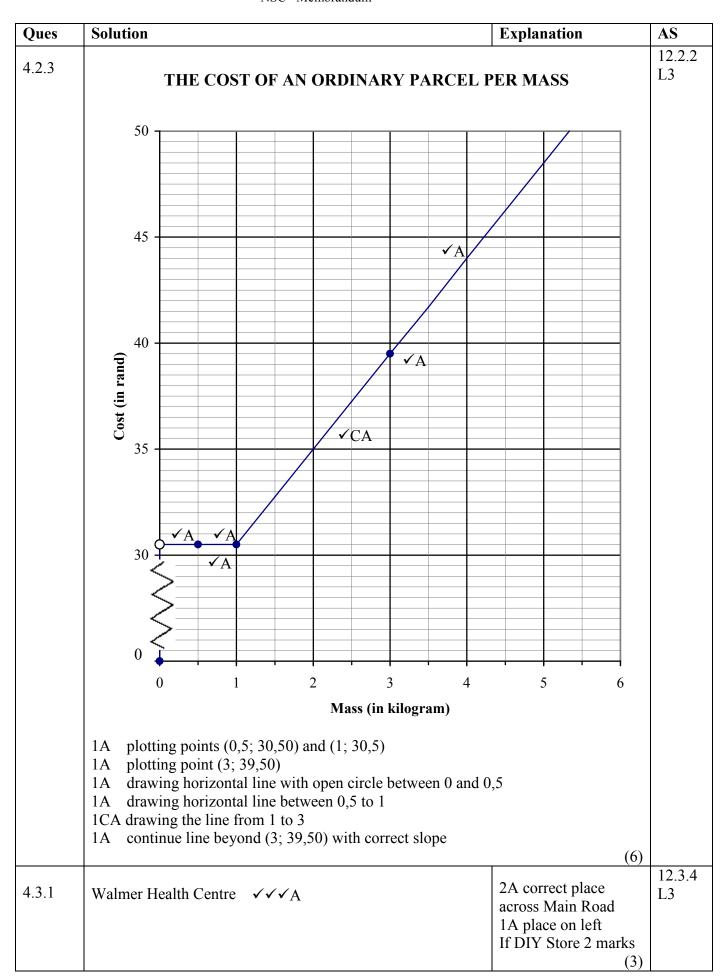
Ques	Solution	Explanation	AS
			12.1.3
2.4	Tax(before rebate) $\checkmark M/A$	1A identifying	L2(3)
	$= R51 \ 300 + 30\% \times (R315 \ 054 - R250 \ 000)$ $= R51 \ 300 + \frac{30}{100} \times R65 \ 054$ $= R51 \ 300 + R19 \ 516,20$	correct tax interval 1M/A finding amount above R250 000	L3(2)
	$= R70 \ 816,20 \qquad \checkmark CA$ Tax payable (after rebate)	1CA tax amount	
	$= R70 816,20 - R11 440,00 - R6 390 \checkmark M$ = R52 986,20 \sqrt CA	1M subtracting both rebates from the tax amount. 1CA simplification	
		If rebates are subtracted before calculating the tax max 3 marks [If incorrect tax bracket used max 3 marks]	
		Correct answer only: full marks (5)	
			[26]

Ν	√SC–	Memorai	ndu
Г	NSC-	Memorai	idui

0	TION 3 [38 MARKS]		10
Ques	Solution	Explanation	AS
3.1.1	Total number of persons 20 years and older in 1996 is 21 251 533 \checkmark A \checkmark M Total number of persons 20 years and older in 2001 is 25 472 770 \checkmark A	1M total 1A population in 1996 1A total number in 2001	12.4.4 L4
	\therefore The increase in the total population from 1996 to 2001 is greater than the increase in the number of persons with no schooling. $\checkmark \checkmark O$	20 explanation	
	OR explanation with calculation	OR	
	Total number of persons 20 years and older in 1996 is $21\ 251\ 533\ \checkmark A \ \checkmark M$ Total number of persons 20 years and older in 2001 is $25\ 472\ 770\ \checkmark A$ Percentage growth of persons with no schooling in 2001 $4\ 567\ 498 = 4\ 055\ 646$	1M total 1A population in 1996 1A total number in 2001	
	$= \frac{4567498 - 4055646}{4055646} \times 100\% = 12,6207\%$ Percentage growth of persons 20 years and older in 2001 $= \frac{25472770 - 21251533}{21251533} \times 100\% = 19,8632\%$	1CA percentage growth	
	Percentage growth of persons 20 years and older was more than the percentage growth of people with no schooling. \checkmark O	10 explanation (5)	
3.1.2	Total number 20 years and older in $2011 = 30915706$ $\checkmark A$	1A total 20 years and older	12.4.1 12.1.1 L3
	59,7% of population = 30 915 706 Total population = $\frac{30915706}{59,7\%}$ \checkmark M = $\frac{30915706}{0,597}$ = 51 785 102,18	1M dividing by 59,7%	
	≈ 51 785 102 ✓CA	1CA population	
	Total younger than 20 years $= 51\ 785\ 102 - 30\ 915\ 706$ OR $= 40,3\% \text{ of } 51\ 785\ 102$ $= 20\ 869\ 396\ \checkmark CA$ $= 20\ 869\ 396\ \checkmark CA$	1CA solution	
	OR		

Ques	Solution	Explanation	AS
	OR Total number 20 years and older in 2011 = 30 915 706 \checkmark A Total younger than 20 years = $\frac{30915706}{59,7\%} \times 40,3\%$ \checkmark M = 20 869 396 \checkmark CA	OR 1A total 20 years and older 1M dividing by 59,7% 1M multiplying by 40,3% 1CA solution (4)	
3.1.3	Number of persons with Gr 12 in 2001 = 5 200 602 P(Grade 12) $= \frac{5200602}{44819778} \checkmark A$ $= \frac{2600301}{22409889} \text{ OR } \frac{866767}{7469963} \text{ OR}$ 11,6% $\text{ OR } \approx 0,12 \text{ OR } \frac{1}{8,6} \qquad \checkmark \text{CA}$	1A number with Gr 12 1A denominator 1CA simplifying Correct answer only:	12.4.4 L3
		full marks (3)	

Ques	Solution	Explanation	AS
3.2.2	 ANY TWO possible trends: * From 1996 to 2011 there was an increase in the number of persons with Grade 12. ✓✓CA * From 1996 to 2011 there was an increase in the number of persons with Tertiary education. ✓✓CA * The percentage increase of persons with Grade 12 is higher than that of persons with Tertiary education. ✓✓C. * There are always more persons in Grade 12 than persons with Tertiary education. ✓✓CA 		12.4.4 L4
3.3.1	The percentages given represent the number of people with Grade 12 as a percentage of the number of people 20 years and older in each province and not nationally. $\checkmark \checkmark O$	(4) 2O acceptable explanation	12.4.4 L4
	OR Data is per province $\checkmark \checkmark O$	(2)	
3.3.2	The ascending order is 19,8 ; 22,4 ; 22,7 ; 25,2 ; 26,8 ; 28,2 ; 29,0 ; 30,9 ; 34,4 ∴ Free State has the median percentage ✓CA	1M/A arranging in ascending order 1CA province	12.4.3 L3(2) L4(1)
	OR	OR	
	The ascending order is EC; LP; NC; NW; FS; WC; MP; KZN; GP ∴ Free State has the median percentage ✓CA	1M/A ascending order 1CA province Correct answer only: full marks (2)	
3.3.3	Eastern Cape and Limpopo $\checkmark A$	1A EC 1A LP (2)	12.4.3 L4
3.3.4(a)	The percentages do not add up to 100% $\checkmark \checkmark J$	2J explanation	12.4.2 L4
	OR		
	The degrees to not add up to 360° $\checkmark \checkmark J$		
	OR		
	There are too many sectors $\checkmark \checkmark J$	(2)	


Ques	Solution	Explanation	AS
3.3.4(b)	The histogram cannot be used since the data is qualitative $\sqrt[]{J}$	2J explanation	12.4.2 L4
	OR		
	The data is not continuous $\checkmark \checkmark J$		
	OR		
	Data is not given in class intervals $\checkmark \checkmark J$	(2)	
3.4.1	✓A ✓A Northern Cape; Gauteng	1A Northern Cape 1A Gauteng Limpopo can also be included (2)	12.3.3 L4
3.4.2	$TS \approx 7 \text{ mm} \checkmark A$	1A measurement [accept answers from	12.3.3 L4
	Actual distance $\approx 7 \text{ mm} \times 10\ 000\ 000 \checkmark \text{M}$ = 70\ 000\ 000\ mm \ \screw CA = 70\ km \ \screw C	5 mm to 8 mm] 1M using scale 1CA simplifying 1C converting to km [accept answers from 50 km to 80 km]	
	OR	OR	
	Scale is 1 mm : 10 000 000 mm ∴ 1 mm : 10 km ✓C	1C converting scale to km	
	$TS \approx 7 \text{ mm} \checkmark A$	1A measurement [accept answers from 5 mm to 8 mm]	
	Actual distance $\approx 7 \text{ mm} \times 10 \text{ km/mm} \checkmark \text{M}$ = 70 km $\checkmark \text{CA}$	1M using scale 1CA simplifying	
		[accept answers from 50 km to 80 km]	
		Correct answer only: full marks	
		(4)	
			[38]

QUESTION 4 [34 MARKS]			
Ques	Solution	Explanation	AS
4.1.1	Perimeter = $5 \times 270 \text{ mm} \checkmark M/A$ = 1 350 mm $\checkmark A$ OR	1M/A multiplying side by 5 only 1A simplification OR	12.3.1 L2
	Perimeter = $(270 + 270 + 270 + 270 + 270) \text{ mm} \checkmark M/A$ = 1 350 mm $\checkmark A$	1M/A adding 5 sides 1A simplification Correct answer only: full marks	
		(2)	
4.1.2	Area of rectangle = length × breadth = 360 mm × 270 mm = 0,36 m × 0,27 m \checkmark C = 0,0972 m ²	1SF substituting into area formula 1C converting	12.3.1 12.3.2 L3
	Surface area of front pentagon (in m ²) = $0.13 - 0.017 - 0.013$ = 0.1 Surface area of rear pentagon (in m ²) = $0.13 - 0.013$	1M subtracting the openings	
	Total surface area (in m ²) = $5 \times 0,0972 + 0,1 + 0,117$ = 0,703 \checkmark CA	1M five rectangles 1CA simplification using all faces	
	OR	OR	
	Total surface area = $2 \times \text{pentagons} + 5 \times \text{rectangles} - (\text{letter opening} + 2 \times \text{newspaper openings})$ $\checkmark M \checkmark \text{SF} \checkmark M$ = $2 \times 0.13 \text{ m}^2 + 5 \times 360 \text{ mm} \times 270 \text{ mm} - (0.017 \text{ m}^2 + 2 \times 0.013 \text{ m}^2) \checkmark C$ = $0.26 \text{ m}^2 + 5 \times 0.36 \text{ m} \times 0.27 \text{ m} - 0.043 \text{ m}^2$ = $0.26 \text{ m}^2 + 0.486 \text{ m}^2 - 0.043 \text{ m}^2$ = $0.703 \text{ m}^2 \checkmark CA$	1M five rectangles 1SF substituting area 1M subtracting the openings 1C converting 1CA simplification using all the faces Correct answer only: full marks (5)	

Ques	Solution	Explanation	AS
4.1.3	Area of a newspaper opening = $\pi \times r^2$ $0,013 \text{ m}^2 = 3,14 \times r^2 \checkmark \text{SF}$ $0,00414 \text{ m}^2 = r^2$ $41,401 \text{ cm}^2 = r^2 \checkmark \text{C}$ $r \approx 6,434 \text{ cm}^{\checkmark} \text{CA}$ The radius of the newspaper is 6 cm $\checkmark \text{A}$ \therefore The newspaper will fit. $\checkmark \text{CA}$	1SF substitution 1C conversion 1CA value of r 1A radius of newspaper 1CA conclusion	12.3.1 L3 (3) L4 (2)
	OR	OR	
	Newspaper radius (in cm) = $\frac{12}{2} = 6$ $\checkmark A$ Area of a circle = $\pi \times r^2$	1A radius	
	$= 3,14 \times (6 \text{ cm})^2 \checkmark \text{SF}$	1SF substitution	
	= $3,14 \times (0,06 \text{ m})^2 \checkmark C$ $\approx 0,0113 \text{ m}^2 \checkmark CA$	1C converting 1CA simplification 1CA conclusion	
	\therefore The newspaper will fit. \checkmark CA	Answer only 1 mark	
		(5) NOTE No variable in	12.2.1
4.2.1	$\checkmark A \qquad \checkmark M \qquad \checkmark M$ $Cost = R30,50 + R4,50 \times mass of parcel greater than 1kg$ OR $\checkmark A \qquad \checkmark M$ $Cost = R30,50 + R4,50 \times a \checkmark M$ where <i>a</i> is the mass of a parcel greater than 1 kg	second term (symbol or words), max 1 mark 1A basic rate R30,50 1M the rate for more than 1 kg 1M multiplied with the mass greater than 1 kg	L3(3)
	OR $\checkmark A \checkmark M \checkmark M$ $Cost = R30,50 + R4,50 \times (mass of parcel - 1)$	(3)	
4.2.2	$A = R30,50 + R4,50 \times (2,5 - 1) = R37,25 \checkmark CA$	1SF substitution (CA from question 4.2.1) 1CA value of A	12.2.1 L2
	Additional mass in kg = $\frac{R70,55 - R30,50}{R4,50}$ $\checkmark M$ $\therefore B = 1 + 8,9 = 9,9 \checkmark CA$	1M subtracting R30,50 1M dividing R4,50 1CA additional mass 1CA value of B	
	OR \checkmark SF $A = R30,50 + R4,50 \times (2,5-1) = R37,25 \checkmark CA$	OR 1SF substitution (CA from question 4.2.1) 1CA value of A	
	$ \begin{array}{c} \text{R70,55} = \text{R30,50} + \text{R4,50} \times a \checkmark \text{SF} \\ \text{R40,05} = \text{R4,50} \times a \checkmark \text{S} \\ 8,9 = a \checkmark \text{CA} \\ \therefore \text{ B} = 1 + 8,9 = 9,9 \checkmark \text{CA} \end{array} $	1SF substitution 1S simplification 1CA value of <i>a</i> 1CA value of B	
	- 7 7-	Answer only: full marks	
		(6)	

Copyright reserved

Please turn over

Ques	Solution	Explanation	AS
4.3.2	The length of the vacant land on the map $\approx 16 \text{ mm}$ The width of the land on the map $\approx 13 \text{ mm}$ $\checkmark \text{A}$	1A measurements (accept lengths from 15 mm to 19 mm;	12.3.4 L3 (1) L4 (3)
	Area of vacant land on the map = $1.6 \text{ cm} \times 1.3 \text{ cm}$ = $2.08 \text{ cm}^2 \checkmark CA$	Accept widths from 12 mm to 14 mm) 1CA area of vacant land	
	Number of sites = $\frac{2,08 \text{ cm}^2}{0,15 \text{ cm}^2}$ = 13,866 $\approx 13 \checkmark \text{CA}$ She can only get 13 sites on the vacant land	1CA number of sites	
	∴ Her claim is not valid ✓CA	1CA verification	
	OR	OR	
	The length of the vacant land on the map $\approx 16 \text{ mm}$ The width of the land on the map $\approx 13 \text{ mm}$	1A measurements (accept lengths from 15 mm to 19 mm; Accept widths from 12 mm to 14 mm)	
	Area of vacant land on the map = $1.6 \text{ cm} \times 1.3 \text{ cm}$ = $2.08 \text{ cm}^2 \checkmark \text{CA}$	1CA area of vacant land	
	Area covered by the sites = $14 \times 0.15 \text{ cm}^2$ = $2.1 \text{ cm}^2 \checkmark \text{CA}$ This area is more than the area on the map	1CA area of the sites	
	∴ Her claim is not valid ✓CA	1CA verification Answer only:	-
		NO marks (4)	-
			[34]

QUEST	TON 5 [28 MARKS]		
Ques	Solution	Explanation	AS
5.1.1	Schools and industries are closed therefore more people book their drivers test in December $\checkmark \checkmark O$	2O explanation	12.4.4 L4
	OR		
	With schools etc. closed there are less cars on the road during holidays, so less chance to make mistakes and fail the test. $\checkmark \checkmark O$		
	Any other valid explanation	(2)	
5.1.2	Minimum = 16 and maximum = $60 \checkmark M$ Range = $44 \checkmark CA$	1M identifying min and max values (accept minimum values of 14 to 18) 1CA range (accept values from 42 to 46)	12.4.3 L2
		Correct answer only: full marks	
		(2)	12.4.6
5.1.3	Toni did not arrange the bars in calendar/chronological order, hence creating the impression that there was an increase. $\checkmark \checkmark J$ Example: $\checkmark CA$ January the number of learners was 52 and February was 24	2J explanation 1CA example	12.4.0 L4
	OR any other suitable example	(3)	
5.2.1	No change in the cost after 15 hours. $\checkmark \checkmark J$	2J correct description	12.2.3 L4
	OR		
	Constant cost from 15 hours onwards. $\checkmark \checkmark J$		
	OR		
	For 15 hours or more of driving lessons there is a fixed rate of R1 500. $\checkmark \checkmark J$		
		(2)	

Ques	Solution	Explanation	AS
5.2.2 (a)	No payment for zero lessons. $\checkmark \checkmark J$	2J correct description	12.2.3 L4
	OR		
	Payment will only be made once the driving lessons start. \checkmark	J	
		(2)	10.0.0
5.2.2 (b)	 ✓A A learner driver pays a basic amount of R600 for the first two hours ✓A Then R50 per hour for every additional hour. ✓A 	1A R600 1A time period 1A rate in rand (3)	12.2.3 L4
5.2.3	At point Q, both Options cost the same at the same time. $\checkmark O$	10 same cost 10 same time	12.2.1 L4
	OR	OR	
	✓O $✓$ O There were 10 hours of driving that cost R1 000 for both Options.	10 time 10 cost Accept " breakeven point " ONLY 1 mark (2)	
5.2.4 (a)	$\checkmark A \qquad \checkmark J$ With Option B Zaheera will get 14 hours of driving lessons.	1A correct option 1J justification	12.2.3 L4
	$\begin{array}{c} OR \\ \checkmark A \\ \checkmark J \\ Zaheera must choose Option B to get 2 more hours of driving lessons than in Option A. \end{array}$	(2)	
5.2.4 (b)	Toni would benefit more from Option A. She still gets R1 200 but in a shorter time than Option B \checkmark J	1A correct option 1J justification	12.2.3 L4
	OR $\checkmark A$ $\checkmark J$ Option A, she will have 2 hours to train someone else.		
		(2)	12.2.2
5.2.5	$ \begin{array}{c} \checkmark A \\ \textbf{Option A is cheaper for Zaheera.} \end{array} $	1A correct option 2J justification	12.2.3 L4
	$\begin{array}{c} \mathbf{OR} \\ \mathbf{\checkmark} \mathbf{A} \\ \mathbf{\checkmark} \mathbf{A} \\ \mathbf{\checkmark} \mathbf{J} \\ \text{She must choose Option A she will pay R600 for the driving} \end{array}$		
	lessons.	(3)	

Ques	Solution	Explanation	AS
			12.2.3
5.2.6	Option A: $\checkmark A$		L3(3)
	Cost for 30 hours = R1 500 \checkmark A	1A cost option A	L4(2)
	Option B: $\checkmark A$ $\checkmark A$	1A basic rate	
	Cost for 30 hours = $R600 + (R50 \text{ per hour } \times 28 \text{ hours})$	1A rate multiplied by	
	= R600 + R1 400	hours	
	$= R2\ 000$ VCA	1CA cost	
		10110050	
	\therefore Difference in cost = R2 000 - R1 500		
	$= R500 \checkmark CA$	1CA difference in	
		cost	
	OR	OR	
	Option A: $\checkmark A$		
	Cost for 30 hours = R1 500 \checkmark A	1A cost option A	
	Option B:		
	Cost for 30 hours		
	\checkmark A \checkmark A	1A basic rate	
	= $R600 + (R100 \text{ per two hours} \times 14 \text{ two hour periods})$	1A rate multiplied by	
	= R600 + R1 400	period	
	$=$ R2 000 \checkmark CA	1CA cost	
	\therefore Difference in cost = R2 000 - R1 500		
	$= R500 \checkmark CA$	1CA difference in	
	- K300 V CA	cost	
	OR	OR	
	Option B:		
	For 22 hours it costs R1 600 \checkmark A		
	It is increasing with K100 every 2 hours	1A rate	
	\therefore Extra cost = 4 × R100 = R400 \checkmark A	1A extra cost	
	Cost for 30 hours = $R1 600 + R400$		
	$=$ R2 000 \checkmark CA	1CA cost	
	Option A:		
	Cost for 30 hours = R1 500 \checkmark A	1A cost option A	
		·····I···	
	$\therefore \text{ Difference in cost} = \text{R2 } 000 - \text{R1 } 500$	101 1:00	
	$= R500 \checkmark CA$	1CA difference in cost	
		Correct answer	1
		only: full marks	
		(5)	1
			[28]
		Total: 150	