

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

.

NOVEMBER 2012

FINAL MEMORANDUM

MARKS: 150

Symbol	Explanation
М	Method
M/A	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
0	Opinion/Example
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
J	Justification

PLEASE NOTE:

- 1. If a candidate deletes a solution to a question without providing another solution, then the deleted solution must be marked.
- 2. If a candidate provides more than one solution to a question, then only the first solution must be marked and a line drawn through any other solutions to the question.

This memorandum consists of 19 pages.

-	TION 1 [26 MARKS]		
Ques	Solution	Explanation	AS
1.1.1	South-westerly $\checkmark \checkmark A$ (accept abreviations for compass directions)	2A correct direction 1A Southerly 1A Westerly	12.3.4 L3
		(2)	
1.1.2	N5 OR N17 ✓✓ A	2A correct national road N17 accepted due to unclear provincial boundaries (2)	12.3.4 L3 12.3.4
1.1.3	One possible route: ✓ A From Bloemfontein turn onto the N1 and travel south until Beaufort West.	1A N1	L2
	Then turn onto the N12 until George. \checkmark A	1A N12 and Beaufort West	
	A second possible route: \checkmark_A From Bloemfontein turn onto the N1 and travel south until the intersection with the N9.	OR 1A N1	
	Then follow the N9 until George. \checkmark A	1A N9	
	A third possible route: $\checkmark A$	OR	
	A third possible route: $\checkmark A$ From Bloemfontein turn onto the N1 and travel south until the intersection with N10. Then follow the N10 in a south easterly direction until the N2.	1A N1	
	Then follow the N2 in a westerly direction until George. \checkmark A	1A N10, N2	
	A fourth possible route: \checkmark A	OR	
	From Bloemfontein turn onto the N1 and later turn onto the N6 to East London. Then follow the N2 in a westerly direction until George. $\checkmark A$	1A (N1) N6 and East London, 1A N2	
	A fifth possible route: $\checkmark A$	OR	
	From Bloemfontein turn north onto the N1, turn right unto N5, take a right unto N3 pass Pietermaritzburg to Durban.	1A N1; N5 and	
	Then at Durban turn south unto the N2, pass East London, Port Elizabeth and continue until George. \checkmark A	1A N3 Durban; N2	
	NOTE: Follow the learners route. But leaners cannot go back to Kimberley (No N8 route).	(4)	

Ques	Solution	Explanation	AS
1.2.1	Total amount for accommodation = R1 050 × 6 \checkmark A = R6 300 \checkmark CA	1A rate \times 6 1CA simplification	12.1.3 L2
	OR (due to language interpretation)		
	Total amount for accommodation = R1 050 × 7 \checkmark A = R7 350 \checkmark CA	Correct answer only– full marks	
		(2)	10.0.2
1.2.2 (a)	Total cost (in rand) = $(60 \times 4 \times \text{number of breakfasts}) \checkmark M$ + $(90 \times 4 \times \text{number of lunches}) \checkmark M$ + $(120 \times 4 \times \text{number of suppers}) \checkmark M$ OR	Note: Equation must have a variable 1M adding 1M multiplying cost 1M multiplying by 4 or number of people OR	12.2.3 L3
	$\checkmark M \qquad \checkmark M$ Total cost (in rand) = $(60 \times x + 90 \times y + 120 \times z) \times 4$ Where $x =$ number of breakfasts $y =$ number of lunches $\checkmark M$ and $z =$ number of suppers OR	1M adding 1M costs in terms of meals 1M variables explained OR	
	Total cost (in rand) = (number of days \times n \times 60) + (number of days \times n \times 90) + (number of days \times n \times 120) + Where n = number of people \checkmark M	1M adding 1M costs in terms of meals 1M variable explained	
	OR	OR	
	Total cost (in rand) = (Sat + Sun + Mon + Tues + Wed + Thurs + Fri) cost = 120n + 270n + 180n + 210n + 270n + 150 n + 60n) = 1 260 n $\checkmark M$ Where n = number of people $\checkmark M$	1M adding 1M costs in terms of days 1M variable explained 270 × number of people/meals - (1 mark only) (3)	
1.2.2 (b)	Total cost (in rand) $= (60 \times 4 \times 5) + (90 \times 4 \times 4) + (120 \times 4 \times 5)$	REFER TO CANDIDATE'S FORMULA Correct answer only– full marks 1S correct substitution	12.2.3 L3
	$= (60 \times 4 \times \$) + (90 \times 4 \times 4) + (12\% \$ 4 \times 5)$ = 1 200 + 1 440 + 2 400 \checkmark CA = 5 040 \checkmark CA	of number of people 1S correct substitution of number of meals	
	OR	1CA simplification 1CA total	

Ques	Solution	Explanation	AS
	OR Total cost (in rand) $= (60 \times x + 90 \times y + 120 \times z) \times 4 \checkmark S \checkmark S$ $= (60 \times 5 + 90 \times 4 + 120 \times 5) \times 4$ $= 1\ 260 \times 4 \checkmark CA$ $= 5\ 040 \checkmark CA$	1S correct subst. no. of people 1S correct subst. no. of meals 1CA simplification 1CA total	
	OR		
	(using equation from 1.2.2 (a) working with daily cost) Total cost (in rand) = $1\ 260 \times 4 \checkmark S \checkmark S$ = $5\ 040 \checkmark CA \checkmark CA$	2S substitution of no. of people 2CA total	
	OR (calculating total daily costs)		
	Cost of meals: Saturday = R120 × 4 = R480 Sunday = (R60 + R90 + R120) × 4 = R1 080 Monday = (R60 + R120) × 4 = R720 \checkmark S Tuesday = (R90 + R120) × 4 = R840 Wednesday = (R60 + R90 + R120) × 4 = R1 080 Thursday = (R60 + R90) × 4 = R600 \checkmark S Friday = R60 × 4 = R240	2S correct subst. daily cost	
	Total cost (in rand) = $480 + 1\ 080 + 720 + 840 + 1\ 080 + 600 + 240$ $\checkmark CA$ = $5\ 040$ $\checkmark CA$	1CA simplification 1CA total	
	OR (calculating total cost of types of meals)		
	Total cost of breakfast = $R60 \times 5 \times 4 = R1\ 200 \checkmark S$ Total cost of lunches = $R90 \times 4 \times 4 = R1\ 440 \checkmark S$	2S correct subst. meal cost	
	Total cost of suppers = $R120 \times 5 \times 4 = R2400$		
	Total cost (in rand) = $1\ 200\ +\ 1\ 440\ +\ 2\ 400\ \checkmark CA$ = $5\ 040\ \checkmark CA$	1CA simplification 1CA total (4)	

Ques	Solution	Explanation	AS
			12.1.3
1.2.3	Cost for nature walk = $(R120 \times 2) + (R100 \times 2) \checkmark M/A$	1M/A expression	L4
	$=$ R440 \checkmark CA	for cost	
		1CA simplification	
	Cost for game park = $R200 \times 4$	_	
	$= \mathbf{R}800 \checkmark \mathbf{A}$	1A cost for game	
		park	
	Cost for boat cruise = $(R200 \times 2) + (R150 \times 2) \checkmark M/A$ - R700 $\checkmark CA$	1M/A expression for	
	= R700 VCA	cost	
		1CA simplification	
	Total entertainment $cost = R440 + R800 + R700 + R2000$	101	
	$= R3 940 \checkmark CA$	1CA total cost	
	Six day option:		
	Total cost for the trip (accom. + meals + long dist. + local + ent)		
	✓M/A	1M/A adding all	
	=R6 300 + R5 040 + R1 602,86 + R513,60 + R3 940	1M/A adding all	
	= R17 396,46 ✓CA	costs	
		1CA total cost	
	OR		
	Seven day option:		
	Total cost for the trip (accom. + meals + long dist. + local + ent)		
	✓M/A	1M/A adding all	
	= R7 350 + R5 040 + R1 602,86 + R513,60 + R3 940	costs	
	$=$ R18 446,46 \checkmark CA	1CA total cost	
		1 I warifi antion	
	\therefore Mr Nel's estimate was CORRECT \checkmark J	1J verification	
		(9)	
			[26]

QUEST	[ON 2 [34 MARKS]		
Ques	Solution	Explanation	AS
2.1.1(a)	$A - 15 = 37 \checkmark M$ $A = 52 \checkmark A$ OR $A = 37 + 15 \checkmark M$ $= 52 \checkmark A$	1M concept of range 1A simplification Correct answer only– full marks (2)	12.4.3 L3
		Refer to value of A	
2.1.1(b)	The mean for 16 customers is 34 minutes	in 2.1.1(a)	12.4.3 L3
	\therefore total waiting time = $16 \times 34 = 544$ $\checkmark M$	1M total waiting time	
	Total of known waiting times = $30 + 15 + 45 + 36 + (52) + 40 + 34 + 42 + 26 + 32 + 38 + 35 + 4$ = $494 \checkmark M$	1+28 1M total of known times	
	Difference is $544 - 494 = 50 \checkmark S$ \therefore 2 customers have a total waiting time of 50 minutes	1S difference of the totals	
	$\therefore B = \frac{50}{2} = 25 \checkmark CA$	1CA value of B	
	OR	OR	
	Mean $\checkmark M$ = $\frac{30+15+45+36+52+40+34+B+B+42+26+32+38+35+41+2}{16}$ = 34	 8 1M adding all the values 1M dividing by 16 	
	$\frac{494 + 2B}{16} = 34$		
	$2B = (34 \times 16) - 494 \checkmark S$ = 50 $\therefore B = 25 \checkmark CA$ OR $B = \frac{(34 \times 16) - 494}{2} \checkmark S$ $= 25 \checkmark CA$	1S simplification	
	$\therefore B = 25 \qquad \checkmark CA \qquad = 25 \qquad \checkmark C.$	A 1CA value of B	
		Correct answer only - full marks	
		(4)	
2.1.1 (c)	Waiting times are: $\checkmark M/A$ 15;25,26;28;30;32;34;35;36;38;40;41;42;45;52 Median = $\frac{34+35}{2} \checkmark M$ = 34,5 $\checkmark CA$	(Using A and B values calculated above) 1M/A arranging 16 terms in ascending order 1M median concept (even number of terms) 1CA simplification (3)	12.4.3 L3

Ques	Solution	Explanation	AS
2.1.2	4 ✓✓CA	2CA correct number	
		Note if B is greater than 27 answer can be 2	
		(2)	10.1.1
2.1.3	The mean, median and range for 7 February are less than those for 14 February. $\checkmark O$	20 comparing the measures Accept a comparison table	12.4.4 L4
	This means that his customers had to wait for a shorter time on 7 February than on 14 February. $\checkmark O$ Any two of the reasons below:	of correct values	-
		2J conclusion	
	 It could be that more people came to eat at his eating place on 14 February, because of Valentine's Day. ✓J 		
	 He had less staff on the 14th, ✓J He had the same number of staff but did not anticipate the increased number of customers. ✓J His equipment was faulty on the 14th – people had to wait longer to be served ✓J The electicity was off for a while ✓J OR 		
	The mean, median and range for 14 February are more than those for 7 February. $\checkmark O$		
	 This means that his customers had to wait for a longer time on 14 February than on 7 February. ✓O Any two of the reasons below: It could be that less people came to eat at his eating place on 7 February, because of Valentine's Day. ✓J 		
	 He had more staff on the 7th, ✓J He had the same number of staff but did not anticipate the difference in number of customers.✓J His equipment was working well on the 7th – people did not wait long to be served ✓J 		
	• No electicity problems on the $7^{\text{th}} \checkmark J$ OR		
	Any other valid, well thought out reason will be accepted	(4)	

Ques	Solution	Explanation	AS
2.2.1	Percentage ordering chicken = $15\% \checkmark A$ If 20% of the total = 40	1A percentage ordering chicken	12.1.1 (2) 12.4.4 (2)
	$\therefore 1\% \text{ of the total} = \frac{40}{20} = 2 \checkmark \text{M}$ $\therefore 15\% \text{ of the total} = 15 \times 2 \checkmark \text{A}$ $= 30 \qquad \checkmark \text{CA}$	1M finding 1% 1A multiplying by 15 1CA simplification	(2) L2 (2) L3 (2)
	OR	OR	
	$\checkmark M$ $20\% : 40 = 15\% : x \checkmark A$ $x = \frac{15\%}{20\%} \times 40 \checkmark S$ $= 30 \checkmark CA$	 1M using proportion 1A percentage ordering chicken 1S expression for <i>x</i> 1CA simplification 	
	OR	OR	
	20% of total = 40 Total = $\frac{40}{20\%}$ ✓M = 200 ✓A ✓A ∴ 15% of 200 = 30 ✓CA	 1M finding total no. of customers 1A total number of customers 1A percentage ordering chicken 1CA simplification Correct answer only– full marks 	-
		(4)	
2.2.2	P(not lamb) = $1 - 25\% = 75\%$ OR 0,75 OR $\frac{3}{4}$ OR	1M subtracting from100 % 1A simplification	
	Percentage not ordering lamb = $10 + 15 + 20 + 30 = 75 \checkmark M$ $\checkmark A$ P(not lamb) = 75% OR 0,75 OR $\frac{3}{4}$	1M adding percentages 1A simplification	
	OR		
	Number of people not ordering lamb $\checkmark M$ = 20 + 30 + 40 + 60 = 150	1M adding actual numbers	
	P(not lamb) = $\frac{150}{200} = \frac{3}{4}$ OR 0,75 OR 75% \checkmark A	1A simplification	
		Correct answer only - Full marks (2)	

Ques	Solution	Explanation	AS
2.3.1	 Two of the following possible reasons: To protect the base of the drum from burning. To bring the fire closer to the grid. To spread the coals evenly. (Perfect the braaing) To use less coal. To stabilise the drum. To retain the heat of the burning coals. The sand can be used to put out the fire. Accept any two valid reasons. √√0 √√0	20 reason 20 reason (4)	
2.3.2	Volume of the braai drum = $108 \ \ell$ = $108 \times 1\ 000\ 000\ \text{mm}^3$ = $108\ 000\ 000\ \text{mm}^3 \checkmark \text{C}$	1C volume in mm ³	12.3.1 L4
	Radius of the braai drum = $\frac{572 \text{ mm}}{2} = 286 \text{ mm}\checkmark\text{A}$	1A value of radius	
	Volume of the braai drum = $\frac{1}{2} \times \pi \times (\text{radius})^2 \times (\text{height})$	1M using $\frac{1}{2}$ cylinder	
	\checkmark SF 108 000 000 mm ³ = $\frac{1}{2} \times 3,14 \times (286 \text{ mm})^2 \times (\text{height})$	1SF substitution into formula	
	Height = $\frac{2 \times 108000000\text{mm}^3}{3,14 \times (286\text{mm})^2}$ \checkmark M	1M Finding expression for height	
	= 840,99 mm \checkmark CA (840,56 mm using π) \approx 841 mm	1CA for height only	
	But length of grid = 1% more than height of drum		
	1% of 840,99 mm = 8,4099 \checkmark M	1M calculation percentage	
	: Length of grid = 840,99 mm + 8,4099 = 849,41 mm	1M increasing by 1% 1CA length of grid	
	OR	OR	
	$\checkmark M \checkmark M$ \therefore Length of grid = 101% of 840,99 mm = 849,40 mm $\checkmark CA$	1M increasing by 1% 1M calculation percentage 1CA length of grid	
		No penalty if answer is rounded to 850 mm	
		(9)	

QUESTION 3 [26 MARKS]			
Ques	Solution	Explanation	AS
3.1.1	Number of R2,00 tickets per seller = $\frac{3500}{\text{number of sellers}} \checkmark A$	1A using 3 500 1A dividing by number of sellers	12.2.1 L3
	OR Number of R2,00 ticket per seller = $\frac{7000 \checkmark A}{2 \times \text{number of sellers} \checkmark A}$ OR Number of R2,00 tickets per seller = $\frac{7000}{2n} = \frac{3500}{n}$	OR 1A using 7 000 ÷ 2 1A dividing by number of sellers	
	where $n = number of sellers$	(2)	
3.1.2 (a)	Indirect/Inverse proportion ✓A	1A correct type of proportion two answers zero marks	12.1.1 L2
3.1.2 (b)	$P = \frac{3500^{\checkmark}A}{250_{\checkmark}A} \qquad OR P : 70 = 50 : 250^{\checkmark}A$ $= 14^{\checkmark}CA \qquad = 50 \times \frac{70}{250} = 14$	 (1) 1A finding the number of tickets 1M dividing by 250 1CA correct value of P 	12.2.1 L2
	$Q = \frac{3500}{125} = 28 \checkmark CA$	1CA correct value of Q Correct answer only - Full marks (4)	

Ques	Solution	Explanation	AS
3.2.4	At R2 per ticket 50 tickets must be sold \checkmark RG At R5 per ticket 20 tickets must be sold \checkmark RG Difference = 50 - 20 = 30 tickets \checkmark CA	1RG reading from graph1RG reading from graph1 CA difference in number of tickets	12.1.1 (1) 12.2.3 (2) L3
	OR	OR	
	Number of R2,00 tickets per person = $\frac{3500}{70}$ = 50 \checkmark M Number of R5,00 tickets per person = $\frac{1400}{70}$ \checkmark M = 20	1M calculating the number of R2,00 tickets 1M calculating the number of R5,00 tickets	
	Difference = $50 - 20$ tickets = 30 tickets \checkmark CA	1CA difference in number of tickets Answer only – Full marks Accept values from 29 to 32. (refer to candidate's graph)	
		(3)	[2(]
			[26]

QUES	TION 4 [27 MARKS]		
Ques	Solution	Explanation	AS
4.1.1	Avro $\checkmark A$ It is the only one that can take MORE than 37 passengers (himself plus 37 others)	1A correct aircraft 2J justification (3)	12.4.4 L4
4.1.2	Scale is 9,9 cm to 19,25 m \checkmark M \checkmark C or 9,9 cm to 1 925 cm OR 0,099 m : 19,25 m Scale = 1 : $\frac{1925}{9,9} \checkmark$ CA OR 1 : $\frac{19,25}{0,099} \checkmark$ CA = 1 : 194,44 = 1 : 190 \checkmark CA	1M scale concept 1C converting to the same unit 1CA dividing to bring to a unit ratio 1CA rounding off Reversed ratio maximum 2 marks No conversion maximum 2 marks	12.3.2 (1) 12.3.3 (3) L3
		Correct answer only- full marks	-
		(4)	12.3.2
4.1.3	Maximum Operating Altitude = 25 000 feet \checkmark RT = $\frac{25\ 000}{6\ 076}$ nautical miles	1RT reading from the table 1M dividing by 6076 ft	L3
	= 4,1145 nautical miles \approx 4 nautical miles \checkmark CA	1CA nearest nautical mile (3)	
4.1.4	Distance = average cruising speed × time 510 km = average cruising speed × 39 minutes \checkmark SF	1SF substitution	12.2.1 L3 (2) L4 (2)
	Average cruising speed = $\frac{510 \text{ km}}{39 \text{ minutes}}$		
	$=\frac{510\mathrm{km}}{0.65\mathrm{h}\mathrm{\checkmark C}}$	1C converting to hours	
	$= 784,62 \text{ km/h} \checkmark \text{CA}$	1CA average speed	
	Ms Bobe was travelling in the SUKHOI \checkmark J OR \checkmark C	1J identification of Aircraft OR	
	Distance (Jetstream) = $(500 \times \frac{39}{60})$ km = 325 km \checkmark SF	1SF substitution 1C converting to hours	
	Distance (Sukhoi) = $(800 \times \frac{39}{60})$ km = 520 km \checkmark CA	1CA distance travel	
	Distance (Avro) = $(780 \times \frac{39}{60})$ km = 507 km \checkmark J	1J identification of	
	Ms Bobe was travelling in the SUKHOI	Aircraft	

Copyright reserved

Ques	Solution	AS	Ques
4.1.4 cont	OR Comparing time		
cont	Time = $\frac{\text{distance}}{\text{speed}}$ Time (Jetstream) = $\frac{510}{500}$ h $\stackrel{\checkmark}{=}$ I,02 hours = 61,2 minutes Time (Sukhoi) = $\frac{510}{800}$ h = 0,6375 hours = 38,25 minutes Time (Avro) = $\frac{510}{780}$ h = 0,6538 hours = 39,23 minutes Ms Bobe was travelling in the SUKHOI \checkmark J	1SF substitution1CA time taken1C converting to minutes1J identification of	
		Aircraft (4)	
4.1.5	Fuel capacity (in litres) = $\frac{\text{fuel capacity (in kg)}}{820 \text{g}}$ = $\frac{9362 \text{ kg}}{500 \text{ s}}$	1SE substitution	12.3.2 L2 (2) L3 (1)
	$= \frac{9362 \text{ kg}}{820 \text{ g}} \checkmark \text{SF}$ $= \frac{9362000 \text{ g}}{820 \text{ g}} \checkmark \text{C}$	1SF substitution 1C converting to grams	
	= 11 417,07317 $\approx 11 417 \checkmark CA$	1CA nearest litre	
	Fuel capacity (in litres) = $\frac{\text{fuel capacity (in kg)}}{820 \text{ g}}$		
	$= \frac{9362 \text{ kg}}{820 \text{ g}} \checkmark \text{SF}$ $= \frac{9362 \text{ kg}}{9362 \text{ kg}} \checkmark \text{C}$	1SF substitution 1C converting to kilograms	
	$= \frac{5502 \text{ kg}}{0.820 \text{ kg}} \checkmark \text{C}$ = 11 417,07317 $\approx 11 417 \checkmark \text{CA}$	1CA nearest litre	
		No conversion - maximum 2 marks (3)	
4.2.1	Johannesburg to Polokwane: SA 8809 ✓✓A Polokwane to Johannesburg: SA 8816 ✓A	2A correct flight number 1A correct flight number (3)	12.4.4 L3

Ques	TION 5 [37 MARKS] Solution	Explanation	AS
Ques	Solution		12.2.2
5.1.1	For 30 items:		L3
01111	$Cost = R5\ 000 \checkmark RG$	1RG cost	_
	Income = R3 600 \checkmark RG	1RG income	
	$Loss = R5\ 000 - R3\ 600$		
	= R1 400		
	\therefore 30 items \checkmark A	1A number of items	
		Correct answer only -	
		full marks	
		(3)	
			12.2.2
5.1.2	Cost of 40 items = $R5 500 \checkmark RG$ OR $40 \times R50,00 + R3 500$	1RG/A cost Or	L4
	Lange 10 Hours D127 50 x 40 (1)	Cost = income	
	Income from 40 items = $R137,50 \times 40 \checkmark M$ = $R5500 \checkmark A$	1M finding total	
	$-$ KJ 500 $^{-11}$	1M finding total income	
	At 40 items, Cost = Income	1Asimplification	
	\therefore Mr Stanford's statement is CORRECT . \checkmark CA	17 Isimpinication	
		1CA verification	
		(4)	
			12.1.1
5.2.1	N is the total sales.	1M concept	L2 (4)
	$16 \% \text{ of } \mathbf{N} = 800 \checkmark M$	1M finding an	L3 (3)
	$\mathbf{N} = 800 \times \frac{100}{16} \checkmark \mathbf{M}$	expression for N	
	10		
	$= 5\ 000 \checkmark A$	1A total sales	
	OR	OR	
	16% of the sales = 800		
		1M finding unit value	
	1% of the sales = $\frac{800}{16} \checkmark M$	1M finding unit value	
		1M finding 100%	
	$\therefore 100 \%$ of the sales $=\frac{800}{16} \times 100 \checkmark M$	11vi finding 100%	
	$\therefore \mathbf{N} = 5\ 000 \checkmark \mathbf{A}$	1A total sales	
	OR	OR	
	21 % of total sales = $1050 \checkmark M$	1M concept	
		-	
	Total sales = $1\ 050 \times \frac{100}{21}$ \checkmark M	1M finding an	
	$\therefore \mathbf{N} = 5\ 000 \checkmark \mathbf{A}^{21}$	expression for N 1A total sales	
	750		
	$\mathbf{K} = \frac{750}{5000} \times 100 \checkmark \mathbf{M}$	1M concept	
	$= 15 \checkmark CA$	1CA simplification	

Ques	Solution	Explanation	AS
	$\mathbf{L} = 17\%$ of total sales		
	$\mathbf{L} = \frac{17}{100} \times 5000 \qquad \checkmark \mathbf{M}$	1M finding 17 %	
	= 850 ✓CA	1CA simplification	
	OR	OR	
	16% of the total is 800		
	1% of the total is $\frac{800}{16}$		
	$\therefore 17\%$ of the total is $\frac{800}{16} \times 17$ $\checkmark M$	1M finding unit value	
	$\therefore \mathbf{L} = 850 \qquad \checkmark \mathbf{CA}$	1CA simplification	
	Please note If L is found first:	Correct answer only full marks]
	$\checkmark M $ $\checkmark CA$	The values need not be a	
	N = 350 + 750 + 1050 + 850 + 800 + 900 + 200 + 100	calculated in the same	
	$= 5\ 000$ \checkmark CA	order as on the memo (7)	
			12.1.1
5.2.2	Vivesh's % (value of M)		L4
	$= \frac{900000}{5000000} \times \frac{\checkmark M}{100\%} OR \qquad \frac{900}{5000} \times 100\% \checkmark M$	1M expression for %	
	$= 18\% \checkmark CA \qquad = 18\% \checkmark CA$	1CA simplification	
	OR $100\% - (7 + 15 + 21 + 17 + 4 + 2 + 16)\%$ \checkmark M		
	= 18% ✓CA		
	Vivesh's bonus = 18% of R300 000 \checkmark M	1M calculating percentage	
	$=$ R54 000 \checkmark CA	1CA simplification	
	∴ The objection is NOT VALID . ✓CA	1CA conclusion (5)	
5.2.3 (a)	R50 000 ✓✓A	2A correct basic bonus (2)	12.1.1 L3

Ques	Solution	Explanation	AS
5.2.3 (b)	Total bonus amount =6,5 % \times R5 500 000		12.1.1 L4
	= R357 500 ✓A	1A total bonus	
	Sales up to and including 10% :3 personsSales of more than 10% up to and including 20% : 4 personsSales of more than 20% :1 person		
	Bonus amount remaining \checkmark_M \checkmark_M = R357 500 - (3 × R10 000 + 4 × R50 000 + R100 000) = R357 500 - R330 000 = R27 500 \checkmark CA	 M finding the total basic bonus M finding the difference A simplification 	
	Amount each will receive = $\frac{R27500}{8}$ \checkmark M	1M dividing by 8	
	= R3 437,50 ✓CA	1CA simplification	
	Mabel's total bonus = $R100\ 000 + R3\ 437,50$	1CA Mabel's bonus (must include R100 000)	
	$= R103 437,50 \checkmark CA$		
	\therefore Mabel's bonus is NOT MORE THAN than R104 000.	10 verification (8)	
5.3.1	Vivesh's sales in 2012 was more than double his sales in 2011. Vivesh was the top salesperson in 2012. $\checkmark 0 \checkmark 0$ OR There is an increase in percentage sales from 12% to 28%	20 interpretation	12.4.6 L4
	OR Any other numerical comparison	(2)	
5.3.2	He read Mabel's and Henry's combined sales of 2011 and 2012 as the sales for 2012 . \checkmark O	20 errors	12.4.6 L4
	✓J Henry's sales for 2012 were only 25%, Mabel's sales were 21% and the person with the highest sales was Vivesh with 28% ✓J	1J Henry & Mabel 1J mention Vivesh as highest	
		(4)	
5.3.3	 Any TWO of the following: Different type of Bar graphs ✓O 	10 bar graphs	12.4.6 L2
	 Line graphs ✓O Pie charts 	10 line graphs OR 10 pie charts	
		(2)	[37]
			[37]

TOTAL: 150