basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
J	Justification

PLEASE NOTE:

1. If a candidate deletes a solution to a question without providing another solution, then the deleted solution must be marked.
2. If a candidate provides more than one solution to a question, then only the first solution must be marked and a line drawn through any other solutions to the question.

This memorandum consists of $\mathbf{1 9}$ pages.

QUESTION 1 [26 MARKS]			
Ques	Solution	Explanation	AS
1.1.1	South-westerly $\quad \checkmark \checkmark$ A (accept abreviations for compass directions)	2A correct direction	$\begin{aligned} & \text { 12.3.4 } \\ & \text { L3 } \end{aligned}$
		1A Southerly 1A Westerly	
		(2)	
1.1.2	N5 OR N17 $\checkmark \checkmark$ A	2A correct national road	$\begin{aligned} & \text { 12.3.4 } \\ & \text { L3 } \end{aligned}$
		N17 accepted due to unclear provincial boundaries	
		(2)	
1.1.3	One possible route: From Bloemfontein turn onto the N1 and travel south until Beaufort West. Then turn onto the N12 until George. \checkmark A A second possible route: $\quad \checkmark$ A From Bloemfontein turn onto the N1 and travel south until intersection with the N9. Then follow the N9 until George. $\quad \checkmark \mathrm{A}$	1A N1	$\begin{aligned} & \hline 12.3 .4 \\ & \text { L2 } \end{aligned}$
		1A N12 and Beaufort West	
		OR	
		1A N1	
		1A N9	
	A third possible route:	OR	
	From Bloemfontein turn onto the N1 and travel south until the intersection with N10. Then follow the N10 in a south easterly direction until the N2.	1A N1	
	Then follow the N2 in a westerly direction until George. \checkmark A	1A N10, N2	
	A fourth possible route: $\quad \checkmark$ A	OR	
	From Bloemfontein turn onto the N1 and later turn onto Ahe N6 to	1A (N1) N6 and East	
	East London. Then follow the N2 in a westerly direction until George. \quad A	London, 1A N2	
	A fifth possible route: $\quad \checkmark$ A	OR	
	From Bloemfontein turn north onto the N1, turn right unto N5, take a right unto N3 pass Pietermaritzburg to Durban. Then at Durban turn south unto the N2, pass East London, Port Elizabeth and continue until George. \checkmark A	1A N1; N5 and	
	NOTE: Follow the learners route. But leaners cannot go back to Kimberley (No N8 route).	(4)	

Ques	Solution	Explanation	AS
1.2.1	$\begin{aligned} \text { Total amount for accommodation } & =\text { R1 } 050 \times 6 \quad \checkmark \mathrm{~A} \\ & =\text { R6 } 300 \checkmark \text { CA } \end{aligned} \quad \begin{aligned} \text { OR (due to language interpretation) } \end{aligned} \begin{aligned} \text { Total amount for accommodation } & =\text { R1 } 050 \times 7 \checkmark \mathrm{~A} \\ & =\text { R7 350 } \checkmark \mathrm{CA} \end{aligned}$	1 A rate $\times 6$ 1CA simplification Correct answer only- full marks	$\begin{aligned} & \text { 12.1.3 } \\ & \text { L2 } \end{aligned}$
$1.2 .2$ (a)	$\begin{aligned} \text { Total cost (in rand) }= & (60 \times 4 \times \text { number of breakfasts) } \checkmark \mathrm{M} \\ & +(90 \times 4 \times \text { number of lunches }) \quad \checkmark \mathrm{M} \\ & +(120 \times 4 \times \text { number of suppers }) \quad \checkmark \mathrm{M} \end{aligned}$ OR Where $\mathrm{n}=$ number of people $\checkmark \mathrm{M}$ OR Total cost (in rand) $\begin{aligned} & =(\text { Sat }+ \text { Sun }+ \text { Mon }+ \text { Tues }+ \text { Wed }+ \text { Thurs }+ \text { Fri }) \text { cost } \\ & =120 n+270 n+180 n+210 n+270 n+150 n+60 n) \\ & =1260 n \quad \checkmark M \end{aligned}$ Where $n=$ number of people $\checkmark \mathrm{M}$	Note: Equation must have a variable 1 M adding 1 M multiplying cost 1M multiplying by 4 or number of people OR 1M adding 1 M costs in terms of meals 1 M variables explained OR 1M adding 1 M costs in terms of meals 1 M variable explained OR 1 M adding 1 M costs in terms of days 1M variable explained $270 \times$ number of people/meals - (1 mark only)	$\begin{aligned} & \text { 12.2.3 } \\ & \text { L3 } \end{aligned}$
		(3)	
$1.2 .2$ (b)	Total cost (in rand) $\begin{aligned} &=(60 \times 4 \vee \mathrm{~g})+(90 \times 4 \times 4)+(12 \oslash \leftrightarrows 4 \times 5) \\ &= 1200+1440+2400 \checkmark \mathrm{CA} \\ &= 5040 \\ & \checkmark \mathrm{CA} \end{aligned}$ OR	REFER TO CANDIDATE'S FORMULA Correct answer only- full marks 1S correct substitution of number of people 1S correct substitution of number of meals 1CA simplification 1CA total	$\begin{aligned} & 12.2 .3 \\ & \end{aligned}$

Ques	Solution	Explanation	AS
		1S correct subst. no. of people 1S correct subst. no. of meals 1CA simplification 1CA total 2S substitution of no. of people 2CA total 2S correct subst. daily cost 1CA simplification 1CA total 2S correct subst. meal cost 1CA simplification 1CA total	

Ques	Solution	Explanation	AS
1.2.3	$\begin{aligned} \text { Cost for nature walk } & =(\mathrm{R} 120 \times 2)+(\mathrm{R} 100 \times 2) \quad \checkmark \mathrm{M} / \mathrm{A} \\ & =\mathrm{R} 440 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Cost for game park } & =\text { R200 } \times 4 \\ & =\text { R800 } \checkmark \mathrm{A} \end{aligned}$ $\begin{aligned} \text { Cost for boat cruise } & =(\mathrm{R} 200 \times 2)+(\mathrm{R} 150 \times 2) \checkmark \mathrm{M} / \mathrm{A} \\ & =\text { R700 } \end{aligned}$ $\begin{aligned} \text { Total entertainment cost } & =\text { R } 440+\mathrm{R} 800+\mathrm{R} 700+\mathrm{R} 2000 \\ & =\text { R3 } 940 \quad \text { CA } \end{aligned}$ Six day option: Total cost for the trip (accom. + meals + long dist. + local + ent) $\checkmark \mathrm{M} / \mathrm{A}$ $\text { =R6 } 300 \text { + R5 } 040 \text { + R1 602,86 + R513,60 + R3 } 940$ $=\text { R17 396,46 } \checkmark \text { CA }$ OR Seven day option: Total cost for the trip (accom. + meals + long dist. + local + ent) $\begin{aligned} & =\text { R7 } 350+\text { R5 } 040+\text { R1 602,86 + R513, } 60+\text { R3 } 940 \\ & =\text { R18 446,46 } 4 \text { CA } \end{aligned}$ \therefore Mr Nel's estimate was CORRECT $\checkmark \mathrm{J}$	1M/A expression for cost 1CA simplification 1A cost for game park 1M/A expression for cost 1CA simplification 1CA total cost 1M/A adding all costs 1CA total cost 1M/A adding all costs 1CA total cost 1 J verification	$\begin{aligned} & \text { 12.1.3 } \\ & \text { L4 } \end{aligned}$
			[26]

QUESTION 2 [34 MARKS]				
Ques	Solution	Explanation		AS
2.1.1(a)	$\begin{aligned} \mathrm{A}-15 & =37 \checkmark \mathrm{M} \\ \mathrm{~A} & =52 \checkmark \mathrm{~A} \end{aligned} \quad \text { OR } \quad \begin{aligned} \mathrm{A} & =37+15 \checkmark \mathrm{M} \\ & =52 \checkmark \mathrm{~A} \end{aligned}$	1 M concept of range 1A simplification		$\begin{aligned} & \hline 12.4 .3 \\ & \text { L3 } \end{aligned}$
		Correct answer only- full marks		
2.1.1(b)	Difference is $544-494=50 \quad \checkmark$ S $\therefore 2$ customers have a total waiting time of 50 minutes $\therefore \mathrm{B}=\frac{50}{2}=25 \quad \checkmark \mathrm{CA}$ OR		Refer to value of A in 2.1.1(a) 1 M total waiting time 1M total of known times 1S difference of the totals 1CA value of B OR 1 M adding all the values 1 M dividing by 16 1S simplification 1CA value of B Correct answer only - full marks	$\begin{aligned} & \text { 12.4.3 } \\ & \text { L3 } \end{aligned}$
			(4)	
$\begin{aligned} & \text { 2.1.1 } \\ & \text { (c) } \end{aligned}$	Waiting times are: \checkmark M/A 15;(25) (25), 26; 28; 30; 32; 34; 35; 36; 38; 40; 41; 42; 45;(52) $\begin{aligned} \text { Median } & =\frac{34+35}{2} \checkmark \mathrm{M} \\ & =34,5 \quad \checkmark \mathrm{CA} \end{aligned}$	(Using A and B values calculated above) 1M/A arranging 16 terms in ascending order 1M median concept (even number of terms) 1CA simplification		$\begin{aligned} & \hline 12.4 .3 \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS
2.1.2	$4 \checkmark \checkmark$ CA	2CA correct number	
		Note if B is greater than 27 answer can be 2	
		(2)	
2.1.3	The mean, median and range for 7 February are less than those for 14 February. This means that his customers had to wait for a shorter time on 7 February than on 14 February. Any two of the reasons below: - It could be that more people came to eat at his eating place on 14 February, because of Valentine's Day. \checkmark J - He had less staff on the $14^{\text {th }}, \checkmark \mathrm{J}$ - He had the same number of staff but did not anticipate the increased number of customers. \checkmark J - His equipment was faulty on the $14^{\text {th }}$ - people had to wait longer to be served $\checkmark \mathrm{J}$ - The electicity was off for a while $\checkmark \mathrm{J}$ OR The mean, median and range for 14 February are more than those for 7 February. \checkmark O This means that his customers had to wait for a longer time on 14 February than on 7 February. Any two of the reasons below: - It could be that less people came to eat at his eating place on 7 February, because of Valentine's Day. \checkmark J - He had more staff on the $7^{\text {th }}, \checkmark \mathrm{J}$ - He had the same number of staff but did not anticipate the difference in number of customers. $\checkmark \mathrm{J}$ - His equipment was working well on the $7^{\text {th }}-$ people did not wait long to be served \checkmark J - No electicity problems on the $7^{\text {th }} \checkmark \mathrm{J}$ OR Any other valid, well thought out reason will be accepted	2 O comparing the measures	$\begin{aligned} & \text { 12.4.4 } \\ & \text { L4 } \end{aligned}$
		Accept a comparison table of correct values	
		2J conclusion	

Ques	Solution	Explanation	AS
2.2.1		1A percentage ordering chicken 1 M finding 1% 1A multiplying by 15 1CA simplification OR 1 M using proportion 1A percentage ordering chicken 1S expression for x 1CA simplification OR 1M finding total no. of customers 1A total number of customers 1A percentage ordering chicken 1CA simplification Correct answer only- full marks	12.1.1 (2) 12.4.4 (2) L2 (2) L3 (2)
2.2.2	$\begin{aligned} & \text { P(not lamb) }=1-25 \%=75 \% \end{aligned} \begin{gathered} \checkmark \mathrm{A} \\ \text { OR } \end{gathered}$ OR Number of people not ordering lamb $\checkmark \mathrm{M}$ $=20+30+40+60=150$ $\mathrm{P}\left(\text { not lamb) }=\frac{150}{200}=\frac{3}{4} \quad \text { OR } 0,75 \quad \text { OR } 75 \% \quad \checkmark \mathrm{~A}\right.$	1 M subtracting from100 \% 1A simplification 1 M adding percentages 1A simplification 1M adding actual numbers 1A simplification Correct answer only Full marks	

Ques	Solution	Explanation	AS
2.3.1	Two of the following possible reasons: - To protect the base of the drum from burning. - To bring the fire closer to the grid. - To spread the coals evenly. (Perfect the braaing) - To use less coal. - To stabilise the drum. - To retain the heat of the burning coals. - The sand can be used to put out the fire. Accept any two valid reasons. $\quad \checkmark \checkmark \mathrm{O} \quad \checkmark \checkmark \mathrm{O}$	2 O reason 20 reason (4)	
2.3.2	But length of grid $=1 \%$ more than height of drum $\begin{aligned} 1 \% \text { of } 840,99 \mathrm{~mm} & =8,4099 \quad \checkmark \mathrm{M} \\ \therefore \text { Length of grid } & =840,99 \mathrm{~mm}+8,4099=849,41 \mathrm{~mm} \end{aligned}$ OR	1 C volume in mm^{3} 1 A value of radius 1 M using $\frac{1}{2}$ cylinder 1SF substitution into formula 1M Finding expression for height 1CA for height only 1 M calculation percentage 1 M increasing by 1% 1CA length of grid OR 1 M increasing by 1% 1 M calculation percentage 1CA length of grid No penalty if answer is rounded to $\mathbf{8 5 0} \mathbf{~ m m}$	$\begin{aligned} & \text { 12.3.1 } \\ & \text { L4 } \end{aligned}$
			[34]

QUESTION 3 [26 MARKS]			
Ques	Solution	Explanation	AS
3.1.1	$\text { Number of R2,00 tickets per seller }=\frac{3500}{\text { number of sellers }} \checkmark \mathrm{A}$ $\begin{gathered} \text { OR } \\ \text { Number of R2,00 ticket per seller }=\frac{7000 \checkmark \mathrm{~A}}{2 \times \text { number of sellers }} \checkmark \mathrm{A} \end{gathered}$ OR Number of R2,00 tickets per seller $=\frac{7000}{2 n}=\frac{3500}{n}$ where $\mathrm{n}=$ number of sellers	1A using 3500 1A dividing by number of sellers OR 1 A using $7000 \div 2$ 1A dividing by number of sellers	$\begin{aligned} & 12.2 .1 \\ & \mathrm{~L} 3 \end{aligned}$
$\begin{aligned} & 3.1 .2 \\ & \text { (a) } \end{aligned}$	Indirect/Inverse proportion \checkmark A	1A correct type of proportion	$\begin{aligned} & \text { 12.1.1 } \\ & \text { L2 } \end{aligned}$
		two answers zero marks	
		(1)	
$\begin{array}{\|l} \text { 3.1.2 } \\ \text { (b) } \end{array}$	$\begin{array}{rlrl} \mathrm{P} & =\frac{3500}{250} \checkmark \mathrm{~A} & \text { OR } \quad \mathrm{P}: 70=50: 250 \checkmark \mathrm{~A} \\ & =14^{\checkmark \mathrm{CA}} \\ \mathrm{Q} & =\frac{3500}{125}=28 \checkmark \mathrm{CA} \end{array}$	1A finding the number of tickets 1M dividing by 250 1CA correct value of P 1CA correct value of Q Correct answer only - Full marks (4)	$\begin{aligned} & 12.2 .1 \\ & \text { L2 } \end{aligned}$

QUESTION 4 [27 MARKS]			
Ques	Solution	Explanation	AS
4.1.1	Avro \checkmark A It is the only one that can take MORE than 37 passengers (himself plus 37 others)	1A correct aircraft 2J justification	12.4.4
4.1.2		1M scale concept 1C converting to the same unit 1CA dividing to bring to a unit ratio 1 CA rounding off Reversed ratio maximum 2 marks No conversion maximum 2 marks	$\begin{aligned} & 12.3 .2 \\ & \text { (1) } \\ & 12.3 .3 \\ & \text { (3) } \\ & \text { L3 } \end{aligned}$
		Correct answer only- full marks	
		(4)	
4.1.3	$\begin{aligned} \text { Maximum Operating Altitude } & =25000 \text { feet } \checkmark \mathrm{RT} \\ & =\frac{25000}{6076} \text { nautical miles } \\ & =4,1145 \ldots \text { nautical miles } \\ & \approx 4 \text { nautical miles } \checkmark \mathrm{CA} \end{aligned}$	1 RT reading from the table 1 M dividing by 6076 ft 1CA nearest nautical mile	$\begin{array}{\|l\|} \hline 12.3 .2 \\ \text { L3 } \end{array}$
4.1.4	Distance $=$ average cruising speed \times time $510 \mathrm{~km}=$ average cruising speed $\times 39$ minutes \checkmark SF $\begin{aligned} \text { Average cruising speed }= & \frac{510 \mathrm{~km}}{39 \text { minutes }} \\ & =\frac{510 \mathrm{~km}}{0,65 \mathrm{~h} \checkmark \mathrm{C}} \\ & =784,62 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \end{aligned}$ Ms Bobe was travelling in the SUKHOI \checkmark J OR Distance $($ Jetstream $)=\left(500 \times \frac{39}{60}\right) \mathrm{km}=325 \mathrm{~km}^{\checkmark} \mathrm{SF}$ Distance (Sukhoi) $=\left(800 \times \frac{39}{60}\right) \mathrm{km}=520 \mathrm{~km}^{\checkmark} \mathrm{CA}$ Distance (Avro) $=\left(780 \times \frac{39}{60}\right) \mathrm{km}=507 \mathrm{~km} \checkmark \mathrm{~J}$ Ms Bobe was travelling in the SUKHOI	1SF substitution 1C converting to hours 1CA average speed 1J identification of Aircraft OR 1SF substitution 1C converting to hours 1CA distance travel 1J identification of Aircraft	$\begin{array}{\|l\|} \hline 12.2 .1 \\ \text { L3 (2) } \\ \text { L4 (2) } \end{array}$

\square

Ques	Solution	AS	Ques
$\begin{gathered} \text { 4.1.4 } \\ \text { cont } \end{gathered}$	OR Comparing time $\text { Time }=\frac{\text { distance }}{\text { speed }}$ Time $($ Jetstream $)=\frac{510}{500} h^{\vee} \stackrel{\checkmark \mathrm{SF}}{=} 1,02$ hours $^{\checkmark}=61,2^{\curlyvee}$ minutes Time (Sukhoi) $=\frac{510}{800} \mathrm{~h}=0,6375$ hours $=38,25$ minutes Time $($ Avro $)=\frac{510}{780} \mathrm{~h}=0,6538 \ldots$ hours $=39,23$ minutes Ms Bobe was travelling in the SUKHOI \checkmark J	1SF substitution 1CA time taken 1C converting to minutes 1J identification of Aircraft	
4.1.5	$\begin{aligned} \text { Fuel capacity (in litres) } & =\frac{\text { fuel capacity (in kg) }}{820 \mathrm{~g}} \\ & =\frac{9362 \mathrm{~kg}}{820 \mathrm{~g}} \quad \checkmark \mathrm{SF} \\ & =\frac{9362000 \mathrm{~g}}{820 \mathrm{~g}} \quad \checkmark \mathrm{C} \\ & =11417,07317 \\ & \approx 11417 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Fuel capacity (in litres) } & =\frac{\text { fuel capacity (in kg) }}{820 \mathrm{~g}} \\ & =\frac{9362 \mathrm{~kg}}{820 \mathrm{~g}} \checkmark \mathrm{SF} \\ & =\frac{9362 \mathrm{~kg}}{0,820 \mathrm{~kg}} \checkmark \mathrm{C} \\ & =11417,07317 \\ & \approx 11417 \quad \mathrm{CA} \end{aligned}$	1SF substitution 1C converting to grams 1CA nearest litre 1SF substitution 1C converting to kilograms 1CA nearest litre No conversion - maximum 2 marks	$\begin{aligned} & \text { 12.3.2 } \\ & \text { L2 (2) } \\ & \text { L3 (1) } \end{aligned}$
		(3)	
4.2.1	Johannesburg to Polokwane: SA $8809 \quad \checkmark \checkmark$ A Polokwane to Johannesburg: SA $8816 \quad \checkmark$ A	2A correct flight number 1A correct flight number	12.4.4

QUESTION 5 [37 MARKS]			
Ques	Solution	Explanation	AS
5.1.1	For 30 items:$\begin{aligned} & \text { Cost }=\text { R5 } 000 \\ & \text { Income } \text { R3 } 600 ~ \\ & \checkmark \text { RG } \end{aligned}$	1RG cost 1RG income 1A number of items Correct answer only full marks	$\begin{aligned} & \hline 12.2 .2 \\ & \text { L3 } \end{aligned}$
		(3)	
5.1.2	At 40 items, Cost = Income \therefore Mr Stanford's statement is CORRECT. \checkmark CA	1RG/A cost Or Cost $=$ income 1 M finding total income 1Asimplification 1CA verification	$\begin{aligned} & 12.2 .2 \\ & \text { L4 } \end{aligned}$
5.2.1		1M concept 1 M finding an expression for N 1A total sales OR 1 M finding unit value 1M finding 100\% 1A total sales OR 1M concept 1 M finding an expression for N 1A total sales 1M concept 1CA simplification	$\begin{aligned} & \hline \text { 12.1.1 } \\ & \text { L2 (4) } \\ & \text { L3 (3) } \end{aligned}$

Ques	Solution	Explanation	AS
	$\begin{aligned} \mathbf{L} & =17 \% \text { of total sales } \\ \mathbf{L} & =\frac{17}{100} \times 5000 \quad \checkmark \mathrm{M} \\ & =850 \quad \checkmark \mathrm{CA} \end{aligned}$ OR 16% of the total is 800 1% of the total is $\frac{800}{16}$ $\therefore 17 \%$ of the total is $\frac{800}{16} \times 17^{\checkmark \mathrm{M}}$ $\therefore \mathbf{L}=850 \quad \checkmark \mathrm{CA}$ Please note If L is found first: $\begin{aligned} \mathrm{N} & =350+750+1050+850+800+900+200+100 \\ & =5000 \quad \checkmark \mathrm{CA} \end{aligned}$	1M finding 17 \% 1CA simplification OR 1M finding unit value 1CA simplification Correct answer only full marks The values need not be a calculated in the same order as on the memo	
5.2.2	\therefore The objection is NOT VALID. \checkmark CA	1M expression for \% 1CA simplification 1M calculating percentage 1CA simplification 1CA conclusion	$\begin{aligned} & \text { 12.1.1 } \\ & \text { L4 } \end{aligned}$
5.2.3 (a)	R50 000 洔	2A correct basic bonus	$\begin{aligned} & \text { 12.1.1 } \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS
5.2.3 (b)	$\begin{aligned} \text { Total bonus amount } & =6,5 \% \times \text { R5 } 500000 \\ & =\text { R357 } 500 \checkmark \mathrm{~A} \end{aligned}$ Sales up to and including 10% : Sales of more than 10% up to and including 20\% : 4 persons Sales of more than 20% : 1 person $\begin{array}{\|l} \text { Bonus amount remaining } \vee \vee \mathrm{M} \\ \quad=\text { R357500-(3×R10 } 000+4 \times \mathrm{R} 50000+\mathrm{M} 100000) \\ \quad=\text { R357500-R330 } 000 \\ =\text { R27 } 500 \vee \text { CA } \end{array}$ $\begin{aligned} & \text { Amount each will receive }=\frac{\mathrm{R} 27500}{8} \checkmark \mathrm{M} \\ & =\mathrm{R} 3437,50 \checkmark \mathrm{CA} \end{aligned} \begin{array}{r} \text { Mabel's total bonus }=\mathrm{R} 100000+\mathrm{R} 3437,50 \\ = \end{array}$ \therefore Mabel's bonus is NOT MORE THAN than R104 000.	1A total bonus 1 M finding the total basic bonus 1 M finding the difference 1CA simplification 1M dividing by 8 1CA simplification 1CA Mabel's bonus (must include R100 000) 10 verification	$\begin{aligned} & \text { 12.1.1 } \\ & \text { L4 } \end{aligned}$
5.3.1	Vivesh's sales in 2012 was more than double his sales in 2011. Vivesh was the top salesperson in 2012. $\checkmark \mathrm{O} \checkmark \mathrm{O}$ OR There is an increase in percentage sales from 12% to 28% OR Any other numerical comparison	2 O interpretation	$\begin{aligned} & \hline 12.4 .6 \\ & \text { L4 } \end{aligned}$
5.3.2	He read Mabel's and Henry's combined sales of 2011 and 2012 as the sales for 2012. $\checkmark \checkmark$ O Henry's sales for 2012 were only 25\%, Mabel's sales were 21% and the person with the highest sales was Vivesh with $28 \% \checkmark$ J	2 O errors 1J Henry \& Mabel 1J mention Vivesh as highest	$\begin{aligned} & \hline 12.4 .6 \\ & \text { L4 } \end{aligned}$
5.3.3	Any TWO of the following: - Different type of Bar graphs \checkmark O - Line graphs - Pie charts	10 bar graphs 10 line graphs OR 10 pie charts	$\begin{aligned} & \text { 12.4.6 } \\ & \text { I2. } \end{aligned}$
			[37]

