

basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
O	Own opinion/Example

This memorandum consists of $\mathbf{2 0}$ pages.

Ques	Solution	Explanation	AS
1.1.3(b)	$\begin{aligned} & 16 \text { days } \checkmark \checkmark \text { RG } \\ & \text { OR } \\ & \text { Salary (Meds) }=\text { R3 } 000+\mathrm{R} 500 \times 18=\mathrm{R} 12000 \quad \checkmark \mathrm{M} \\ & \therefore \text { R } 750 \times \text { number of days worked }=\text { R12 } 000 \\ & \text { Number of days }=16 \checkmark \mathrm{~A} \end{aligned}$	2RG reading from graph plotted 1M calculating salary 1A number of days	12.2.3
1.2.1	$\begin{aligned} \text { Total extra distance travelled } & =20 \times 2 \times 40 \mathrm{~km}^{\checkmark \mathrm{M}} \\ & =1600 \mathrm{~km} \end{aligned}$ $\begin{aligned} \text { Extra petrol needed } & =1600 \mathrm{~km} \times 7,5 \ell \div 100 \mathrm{~km} \checkmark \mathrm{M} \\ & =120 \ell \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Extra cost } & =\text { petrol cost }+ \text { maintenance cost } \\ & =120 \ell \times \mathrm{R} 9,82+1600 \times \mathrm{R} 0,70 \quad \checkmark \mathrm{CA} \\ & =\mathrm{R} 1178,40+\mathrm{R} 1120,00 \\ & =\mathrm{R} 2298,40 \checkmark \mathrm{CA} \end{aligned}$ OR Extra cost per single trip $\begin{aligned} & =40 \mathrm{~km} \times 7,5 \ell \div 100 \mathrm{~km} \times \mathrm{R} 9,82 / \ell \checkmark \mathrm{A} \\ & =\mathrm{R} 29,46 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Extra maintenance cost per single trip } & =40 \mathrm{~km} \times \mathrm{R} 0,70 / \mathrm{km} \\ & =\mathrm{R} 28,00 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Total extra cost per single trip }= & \mathrm{R} 29,46+\mathrm{R} 28,00 \\ & =\mathrm{R} 57,46 \checkmark \mathrm{CA} \\ & \checkmark \mathrm{~A} \end{aligned}$ $\text { Total extra cost for } 2 \text { trips }=2 \times 20 \times \text { R57,46 }$ $=\mathrm{R} 2298,40^{\checkmark \mathrm{CA}}$ OR	1A number of days and trips 1M extra distance/trip 1A total distance Penalty 2 marks if one way distance calculated 1M multiplying and dividing 1CA extra petrol needed 1M petrol cost 1CA maintenance cost 1CA simplification 1M multiplying and dividing 1A using petrol cost 1A extra petrol cost 1A using maintenance cost 1A extra maintenance cost 1CA cost per single trip 1A number of days and trips 1CA simplification	$\begin{aligned} & \text { 12.2.1 } \\ & \text { 12.1.1 } \end{aligned}$

Ques	Solution	Explanation	AS
	OR Extra cost	1A number of days and trips 1M extra distance/trip 1 M multiplying and dividing 1A petrol needed 1A petrol cost 1A distance maintenance cost 1A maintenance cost 1CA simplification Answer only full marks	
1.2.2	He should accept the job at Meds SA. ${ }^{\checkmark} \mathrm{CA}$ \checkmark CA He will earn R2 000 more per month at ABC Cigs, but will have to pay R2 298,40 more per month for travel. $\checkmark \checkmark \mathrm{J}$ OR $\checkmark \mathrm{CA}$ \checkmark CA He must choose Meds SA because he earns R298,40 more	1CA choice 1CA difference in salary 2J justification	12.4.4
1.2.3	$\checkmark \checkmark$ J The manager is generalizing results from a misleading graph. $\checkmark \mathrm{J}$ The graph provides no time comparison and thus there is no annual decrease in the number of deaths due to cigarette smoking. OR $\checkmark \checkmark$ J The manager is generalizing results from a misleading graph. The graph shows the percentage of deaths per type of disease arranged in a descending order and thus does not show a decrease in the number of annual deaths due to cigarette smoking.	2J justification 2J justification 2J justification 2J justification	12.4.6

QUESTION 2 [23MARKS]			
Ques	Solution	Explanation	AS
2.1.1	$\begin{aligned} \text { Gail's rate } & =\frac{\mathrm{R} 750}{3,75 \text { hours }} \quad \checkmark \mathrm{RT} \\ & \checkmark \mathrm{M} \\ = & \mathrm{R} 200,00 \text { per hour } \quad \checkmark \mathrm{A} \end{aligned}$ $\begin{aligned} \text { TBOS' rate } & =\frac{\mathrm{R} 400}{2,5 \text { hours }} \\ & =\mathrm{R} 160 \text { per hour } \quad \checkmark \mathrm{A} \end{aligned}$ $\begin{aligned} \text { Dong's rate } & =\frac{\mathrm{R} 700}{3,5 \text { hours }} \\ & =\mathrm{R} 200 \text { per hour } \checkmark \mathrm{A} \end{aligned}$ \therefore Her statement is incorrect \checkmark CA OR $\checkmark \mathrm{A}$ Gail's cost for 3,75 hours $=$ R750,00 TBOS' cost for 3,75 hours $=\frac{\mathrm{R} 400}{2,5 \text { hours }} \times 3,75$ hours $\stackrel{\checkmark \mathrm{A}}{\checkmark}$ $=\mathrm{R} 600,00 \checkmark \mathrm{CA}$ Dongs cost for 3,5 hours $=$ R700,00 $\quad \checkmark \mathrm{A}$ \therefore Her statement is incorrect \checkmark CA	1RT reading from the table 1 M finding the rate 1A Gail's rate	$\begin{aligned} & \text { 12.1.1 } \\ & \text { 12.1.3 } \end{aligned}$
		1A TBOS' rate	
		1A Dong's rate 1CA conclusion (Accept a similar statement)	
		1A Gail's rate 1 M dividing 1A correct values 1CA TBOS' rate	
		1A Dong's rate 1CA conclusion	
		maximum 2 marks if only a correct conclusion is made without calculations	
		(6)	

Ques	Solution	Explanation	AS
2.2.1	Graph Y $\quad \checkmark$ A We know this because Graph Y passes through the point $(2,5 ; 400) \quad$ OR $(1 ; 160)^{\vee}$ RG OR explanation in words	1A identifying correct graph 1RG any correct point used in explanation	12.2.3
2.2.2	Graph X: for R640 time taken is 3,2 hours, $\checkmark \mathrm{RG}$ Graph Y: for R640 time taken is 4 hours \checkmark RG $\begin{aligned} \text { Difference in time } & =4 \text { hours }-3,2 \text { hours } \checkmark \mathrm{M} \\ & =0,8 \text { hours } \checkmark \mathrm{CA} \\ & =0,8 \times 60 \text { minutes } \\ & =48 \text { minutes } \checkmark \mathrm{C} \end{aligned}$ OR $\begin{aligned} \text { Difference in time } & =4 \times 60 \text { minutes }-3,2 \times 60 \text { minutes } \\ & =240 \text { minutes }-192 \text { minutes } \\ & =48 \text { minutes } \checkmark \mathrm{CA} \end{aligned}$	1RG reading correct time from the graph (Accept 3,15 to 3,25) 1RG reading correct time from the graph (Accept 3,95 to 4,05) 1M subtraction 1CA difference in hours (Accept 0,7 to 0,9) 1 C converting to minutes (Accept 42 minutes to 54 minutes) 1M subtraction 1 C converting to minutes 1CA difference in minutes	12.2.3
2.3.1	Because TBO's will repair the tailgate. $\checkmark \mathrm{J}$ OR Because TBO's is not replacing it. $\checkmark \mathrm{J}$ OR Because TBO's will take longer $\checkmark \mathbf{J}$	1J justification	12.4.5
2.3.2	Gail's Panelbeaters ${ }^{\checkmark} \mathrm{A}$ Their final quotation is much lower. $\checkmark \mathrm{J} \checkmark \mathrm{J}$	1A choice 2J justification	12.4.5

Ques	Solution	Explanation	AS
3.1.1(b)		1M measuring 1A scale	$\begin{aligned} & \hline 12.3 .2 \\ & 12.3 .3 \end{aligned}$
		1 M adding the correct scale values 1CA using correct values 1CA simplification	
		1 M measuring 1 A scale 1CA ratio	
		1M multiplying 1C conversion	
		1A scale 1 M proportion 1CA multiplying 1CA dividing 1CA solution (Accept 462,5 km to 537,5 km)	

Ques	Solution	Explanation	AS
3.1.3(b)	They used 9ℓ to cover 100 km 1ℓ to cover $\frac{100}{9} \mathrm{~km}$ 45ℓ to cover $\frac{100}{9} \times 45 \mathrm{~km} \quad \checkmark \mathrm{M}$ $=500 \mathrm{~km} \quad \checkmark \mathrm{CA}$ $\begin{aligned} \text { Distance from Johannesburg } & =600 \mathrm{~km}-500 \mathrm{~km} \\ & =100 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ OR Distance travelled \times petrol consumption $=$ number of litres used $\begin{aligned} \text { Distance travelled } & =\frac{45 \ell}{9 \ell \text { per } 100 \mathrm{~km}} \checkmark \mathrm{M} \\ & =500 \mathrm{~km} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Distance from Johannesburg } & =600 \mathrm{~km}-500 \mathrm{~km} \\ & =100 \mathrm{~km} \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} 9 \ell: 100 \mathrm{~km} & =45 \ell: x \\ x & =\frac{45 \ell \times 100 \mathrm{~km}}{9 \ell} \checkmark \mathrm{M} \\ & =500 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Distance from Johannesburg } & =600 \mathrm{~km}-500 \mathrm{~km} \\ & =100 \mathrm{~km} \checkmark \mathrm{CA} \end{aligned}$	1 M dividing by the consumption rate 1CA distance travelled 1CA solution (Accept 55 km to 145 km) 1 M dividing by the consumption rate 1CA distance travelled 1CA simplification (Accept 55 km to 145 km) 1 M using proportion 1CA distance travelled 1CA simplification (Accept 55 km to 145 km)	12.3.2
3.2	- take the N2 to Durban $\checkmark \mathrm{A}$ - take the N3 to Harrismith \checkmark A - take N 5 to Bloemfontein $\checkmark \mathrm{A}$ - take the N8 through Kimberley \checkmark A - take the N10 until Upington $\checkmark \mathrm{A}$	1A route and town Port Shepstone to East London to Upington N6 N8 N10 (max 4 marks) Port Shepstone to East London to Upington N10 (max 3 marks)	12.3.4
3.3	Rustenburg $\checkmark \checkmark$ A	2A destination (2)	12.3.4

QUESTION 4 [28 MARKS]			
Ques	Solution	Explanation	AS
4.1	South \checkmark A \checkmark A	2A direction South West full marks South East 1 mark	12.3.4
		(2)	
4.2	$$ $\begin{aligned} \text { Area of a door opening } & =109 \% \text { of } 2,08 \mathrm{~m}^{2} \quad \checkmark \mathrm{M} \\ & =1,09 \times 2,08 \mathrm{~m}^{2} \\ & =2,2672 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} 2,14 \mathrm{~m} \times \text { width } & =2,2672 \mathrm{~m}^{2} \\ \text { width } & =\frac{2,2672 \mathrm{~m}^{2}}{2,14 \mathrm{~m}} \\ & =1,0594 \ldots \\ & \approx 1,06 \mathrm{~m} \checkmark \mathrm{CA} \end{aligned}$	1M multiplying 1C conversion 1 M working with percentage 1CA area 1CA width of door opening in metres	$\begin{aligned} & 12.3 .1 \\ & 12.3 .2 \end{aligned}$

Ques	Solution	Explanation	AS
			12.1.1
4.3.2	Total area to be painted in both bedrooms $\begin{gathered} =25,84 \mathrm{~m}^{2}+28,44 \mathrm{~m}^{2} \\ =54,28 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ \checkmark \mathrm{M} \end{gathered}$ Amount of paint required $=\frac{54,28 \mathrm{~m}^{2}}{4 \mathrm{~m}^{2} / \ell}$ OR $\frac{54,28 \mathrm{~m}^{2}}{20 \mathrm{~m}^{2} \text { pertin }}$ $=13,57 \ell^{\checkmark \mathrm{CA}}=2,714 \mathrm{tins}$ Number of 5ℓ containers $=\frac{13,57 \ell}{5 \ell} \quad \checkmark \mathrm{M}$ $\therefore 3$ containers are needed. $\begin{aligned} \text { Cost } & =\mathrm{R} 169,99 \not \mathrm{C}_{\mathrm{A}} \\ & =\mathrm{R} 509,97 \end{aligned}$ Mrs Wong's estimation was INCORRECT OR $4 \mathrm{~m}^{2}$ is covered by 1ℓ of paint $1 \mathrm{~m}^{2}$ is covered by $\frac{1}{4} \ell$ of paint Total area to be painted in both bedrooms $\begin{aligned} & =25,84 \mathrm{~m}^{2} \pm 28,44 \mathrm{~m}^{2} \\ & =54,28 \mathrm{~m}^{2} \end{aligned}$ $\therefore 54,28 \mathrm{~m}^{2}$ is covered by $\frac{1}{4} \times 54,28 \ell$ of paint $=13,57 \ell^{\checkmark \mathrm{CA}}$ $\checkmark \mathrm{M}$ Number of 5ℓ containers $=\frac{13,57 \ell}{5 \ell}$ $=2,714$ $\therefore 3$ containers are needed. $\begin{aligned} \text { Cost } & =\text { R169,99 } \times \text { KA } \\ & =R 509,97 \end{aligned}$ Mrs Wong's estimation was INCORRECT		12.1.2
		1CA simplification	
		1 M dividing	
		1CA simplification	
		1 M dividing by 5ℓ	
		1 R rounding up	
		$1 \mathrm{CA} \operatorname{cost}$	
		10 correct conclusion	
		1 M dividing	
		1CA simplification	
		1CA simplification	
		1 M dividing by 5ℓ	
		1 R rounding up	
		1CA cost	
		10 correct conclusion	

Ques	Solution	Explanation	AS
4.4	\therefore The invoice amount was incorrect. $\sqrt{ } \mathrm{O}$ OR Total labour cost $=6 \times \begin{gathered}\checkmark \mathrm{M} \\ \mathrm{R} 35,90+6 \times 1 \frac{1}{2} \times \mathrm{RA} 35,90\end{gathered}$ $=\mathrm{R} 538,50 \quad \checkmark \mathrm{CA}$ \therefore The invoice amount was incorrect. $\checkmark \mathrm{O}$ OR Rate on Saturdays $=\mathrm{R} 35,90+\frac{1}{2} \times \mathrm{R} 35,90=\mathrm{R} 53,85$ Labour cost on Saturday $=6 \times$ R53,85 $=$ R323,10 \quad CA Labour cost on Friday $=6 \times$ R35,90 $=$ R215,40 $\checkmark \mathrm{A}$ Total payment $=$ R323,10 + R215,40 $=$ R538,50 $\quad \checkmark \mathrm{M}$ \therefore The invoice amount was incorrect. $\checkmark \mathrm{O}$	1 M finding total time 1A simplification 1CA total payment 10 correct conclusion 1 M finding total hour 1A simplification 1CA total payment 10 correct conclusion 1CA Sunday 1A Friday 1 M adding 10 correct conclusion	$\begin{aligned} & 12.1 .3 \\ & 12.2 .1 \end{aligned}$

QUESTION 5 [42 MARKS]			
Ques	Solution	Explanation	AS
5.1.1		1A number of scores more than 90) 1M probability 1CA simplifying (value must be less than 1) Answer only full marks	12.4.5
		(3)	
5.1.2 (a)			12.4.3
	Vuka Secondary $\begin{aligned} & \text { 49; 50; 54; 57; 67; 67; 67; 78; 78; 89; 90; 90; 95; 98 } \checkmark \mathrm{A} \\ & \begin{aligned} \mathbf{P}(\text { Median }) & =\frac{67 \%+78 \%}{2} \checkmark \mathrm{M} \\ & =72,5 \% \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ $\begin{aligned} & \mathbf{Q} \text { (Mean) } \begin{array}{l} \checkmark \mathrm{M} \\ =\frac{90+67+67+89+50+78+54+67+95+90+98+57+49+78}{14} \% \\ =\frac{1029}{14} \% \checkmark \mathrm{~A} \\ =73,5 \% \checkmark \mathrm{CA} \end{array} \end{aligned}$ Bathini High $\begin{aligned} \mathbf{R}(\text { Range }) & =99 \%-59 \% \checkmark \mathrm{M} / \mathrm{A} \\ & =40 \% \checkmark \mathrm{~A} \end{aligned}$	1A Arranging 1 M concept of median 1CA simplifying 1M concept of mean 1A correct sum 1CA simplifying 1M/A concept 1A range No penalty if percentage left out Answer only full marks	

Ques	Solution					Explanation	AS
5.1.2(b)	Median		Mode	Mean	Range	1CA identifying school 1J mean 1J range	12.4.3
	Bathini High	72\%	67\%	76,4\%	40\%		
	Vuka Secondary	72,5\%	67\%	73,5\%	49%		
	Bathini High performed better \checkmark CA Bathini High has a greater mean\checkmark OR Vuka Secondary has a smaller mean \checkmark J Vuka Secondary has a larger range						
5.1.3(a)	The scores are $90 \% ; 95 \%$ and $98 \% \checkmark \mathrm{~A}$					1A for 90% 1A for 95% 1A for 98\%	12.4.3
						Penalty for each extra value. No penalty for extra 90%	
						(3)	
5.1.3(b)	$\begin{aligned} & 25^{\text {th }} \text { percentile of Bathini High }=67 \% \checkmark \mathrm{~A} \\ & \therefore 4 \text { learners } \quad \checkmark \mathrm{CA} \end{aligned}$					1A identifying score 1CA number of learners	12.4.3

Ques	Solution	Explanation	AS
5.1.4(a)	$$ \therefore The records were NOT correct ${ }^{\checkmark} \mathrm{J}$ OR $\checkmark \mathrm{A}$ Lindiwe lost only $2 \times 12=24$ marks $\checkmark \mathrm{A}$ Lindiwe's score $=(100-24)$ marks $\checkmark \mathrm{M}$ $=76 \text { marks } \checkmark \mathrm{CA}$ \therefore The records were NOT correct $\checkmark \mathrm{J}$	3A correct values 1CA simplification 1 J conclusion 2A calculating 1M subtraction 1CA simplification 1 J conclusion Maximum 2 marks for correct conclusion with no calculations	12.1.1
		(5)	
5.1.4(b)	OPTION 1		12.1.1
	$\begin{aligned} 30 \text { Multiple choice correct answers } & =30 \times 2 \text { marks } \\ & =60 \text { marks } \checkmark \mathrm{A} \end{aligned}$	1M multiplication 1A simplification	
	$\begin{aligned} & 10 \text { short questions correct }=10 \times 3=30 \text { marks } \checkmark \mathrm{A} \\ & 5 \text { one-word answers correct }=5 \times 1=5 \text { marks } \checkmark \mathrm{A} \end{aligned}$	1A short questions	
	Total marks $=60+30+5=95 \checkmark \mathrm{~A}$	1A one-word 1A simplification	
	OPTION 2	Learners can reason that 5 marks are lost	
		1M multiplication 1A simplification	
	$\begin{aligned} & 9 \text { short questions correct }=9 \times 3=27 \text { marks } \checkmark \mathrm{A} \\ & 8 \text { one-word answers correct }=8 \times 1=8 \text { marks } \checkmark \mathrm{A} \\ & \text { Total marks }=60+27+8=95 \checkmark \mathrm{~A} \end{aligned}$	1A short questions 1A one-word 1A simplification	
	Total marks $=60+27+8=95 \checkmark \mathrm{~A}$	Learners can reason that 5 marks are lost	
		(5)	

Ques	Solution	Explanation	AS
5.2.1	$96,67 \%$ of the number of learners who passed the examination $=29$ $\begin{array}{\|lll} \text { Number of learners who wrote } & \\ \begin{array}{rlrl} & =\frac{29}{96,67 \%} \checkmark \mathrm{M} & \text { OR } & =\frac{29}{96,67} \times \frac{100}{1} \\ & \checkmark \mathrm{M} \checkmark \mathrm{~A} \\ & \approx 3,99 & & =29,99 \mathrm{R} 96555 \ldots \end{array} \end{array}$ $\begin{aligned} \text { Number of learners who failed } & =30 \nabla \text { 29 } \\ & =1 \end{aligned}$ $\begin{array}{rcc} \checkmark \mathrm{M} & \checkmark \mathrm{~A} & \text { OR } \\ 96,67 \%: 29 & =3,33 \%: & \\ & =3,33 \%: 1 \quad \checkmark \mathrm{CA} \times 29 \\ 96,67 & \checkmark \mathrm{CA} \end{array}$ Number of learners who failed $=1$ OR method of trial - and - error	1A using correct numbers 1 M division 1A 30 learners 1CA simplification 1 M using ratio 1A 3,33\% 1CA simplification 1CA simplification Answer only full marks	$\begin{aligned} & 12.1 .1 \\ & \text { 12.4.4 } \end{aligned}$
5.2.2	$\begin{aligned} & \text { Number of learners who passed }=134^{\checkmark \mathrm{A}} \\ & \begin{aligned} \mathrm{P}(\text { degree pass }) & =\frac{\text { number of learners with a degree pass }}{\text { totalnumber of learners who passed }} \\ & =\frac{65}{134} \\ & \approx 48,5 \% \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1A total number of learners who passed 1A number of degree passes 1M probability 1CA percentage (less than 100\%) to 1 decimal place	$\begin{aligned} & \hline 12.1 .1 \\ & 12.4 .5 \end{aligned}$
5.2.3	Vuka Secondary performed better. $\quad \checkmark \mathrm{A}$ Vuka Secondary entered 153 learners for the Matric V_{J} examination and more of them obtained a degree pass. $(42,48 \%)$ Vuka Secondary also had more diploma passes (28,8\%) $\checkmark \mathrm{A}$ OR Bathini High had a higher overall percentage pass rate but they only had 30 learners who wrote tbg examination and only $13,33 \%$ obtained a degree pass. OR Any similar well thought-out reasoning.	1A correct school 2J justification 2J justification If Bathini is chosen max 3 marks	$\begin{aligned} & \hline 12.1 .1 \\ & \text { 12.4.4 } \end{aligned}$

