basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

These marking guidelines consist of 9 pages.

SECTION A

QUESTION 1

1.1 | 1.1 .1 | $C \checkmark \checkmark$ | |
| :--- | :--- | :--- |
| | 1.1.2 | $\mathrm{B} \checkmark \checkmark$ |
| | 1.1.3 | $\mathrm{C} \checkmark \checkmark$ |
| | 1.1.4 | $\mathrm{B} \checkmark \checkmark$ |
| | 1.1.5 | $\mathrm{A} \checkmark \checkmark$ |
| | 1.1.6 | $\mathrm{C} \checkmark \checkmark$ |
| | 1.1 .7 | $\mathrm{C} \checkmark \checkmark$ |
| | 1.1.8 | $\mathrm{D} \checkmark \checkmark$ |
| | 1.1.9 | $\mathrm{B} \checkmark \checkmark$ |

(9×2)
1.2 1.2.1 Hydrogen \checkmark bonds
1.2.2 Genome \checkmark
1.2.3 Cultural \checkmark evidence
1.2.4 Speciation \checkmark
1.2.5 Haemophilia \checkmark
1.2.6 Foramen magnum \checkmark
1.2.7 Alleles \checkmark
1.2.8 Discontinuous \checkmark variation
1.2.9 Gonosomes (9 $\times 1$)
1.3 1.3.1 A only $\checkmark \checkmark$
1.3.2 Both A and B $\checkmark \checkmark$
1.3.3 A only $\checkmark \checkmark$
(3×2)
1.4 1.4.1 D-Chromatid \checkmark

E-Centromere \checkmark
1.4.2 $23 \checkmark$ pairs
1.4.3 (a) E \checkmark
(b) $C \vee / B$
1.4.4 (a) Nucleus \checkmark

Mitochondrion \checkmark
(Mark first TWO only)
(b) Double helix \checkmark
(c) (DNA) Replication \checkmark

1.5 1.5.1 Phylogenetic tree $\checkmark /$ cladogram

1.5.2 An exoskeleton \checkmark
1.5.3 (a) $S \checkmark$
(b) $T \checkmark$
1.5.4 (a)Trilobites \checkmark
(b) Helmetids \checkmark
(c) Tegopeltids \checkmark
OR
(b)Tegopeltids \checkmark
(c) Helmetids \checkmark
(d) Naraoids \checkmark

QUESTION 2

2.1 2.1.1 - Due to non-disjunction $\checkmark /$ Non-separation of a chromosome pair

- during Anaphase IV
- Two chromosomes moved to the one pole \checkmark and
- none moved to the other pole \checkmark

Any
2.1.2 - Gamete A will have 24 chromosomes \checkmark /an extra chromosome

- and when it fertilises a normal ovum $\checkmark /$ gamete with 23 chromosomes
- the zygote will have 3 chromosomes at position $21 \checkmark / 47$ chromosomes
2.1.3 (a) Prophase IV
(b) - Adjacent chromatids of homologous chromosomes cross \checkmark
- at a point called the chiasma \checkmark
- There is an exchange of DNA segments \checkmark /genetic material
(c) - Crossing over introduces genetic variation \checkmark in gametes
- Genetic variation may result in favourable characteristics \checkmark
- that ensure a better chance of survival \checkmark
- when environmental conditions change \checkmark

OR

- Crossing over introduces genetic variation \checkmark in gametes
- Genetic variation may result in unfavourable
- characteristics \checkmark
- that reduce the chance of survival \checkmark
- when environmental conditions change \checkmark Any
$2.2 \quad$ 2.2.1 \quad (a) Female without SCID \checkmark
(b) Male with SCID \checkmark
(c) $X^{D} X^{d} \checkmark \checkmark$
2.2.2 - He inherited the recessive allele \checkmark / X^{d}
- from the mother \checkmark /individual 4
2.3 2.3.1 (a) It allows for the production of organisms with desired characteristics $\checkmark /$ high average milk yield
(Mark first ONE only)
(b) - It reduces genetic variation \checkmark in offspring
- It results in no further genetic improvement \checkmark
- It is expensive \checkmark
- It may not be economical for commercial agriculture \checkmark
(Mark first ONE only)
Any
2.3.2 LMJC 865 had a high average milk-production yield $\checkmark /$ produced 78 litres per day/ had the desired characteristic
2.3.3 - A diploid cell $\checkmark /$ a cell with all the genetic information is needed
- An ovum is a haploid cell $\checkmark /$ only contains half of the genetic information
2.3.4 - The nucleus of an ovum is removed \checkmark and replaced with
- the nucleus of a somatic donor cell $\checkmark /$ diploid donor cell
- The zygote is stimulated \checkmark
- for mitosis \checkmark to occur
- The embryo is then placed into the uterus of an adult female \checkmark

OR

- Plants may be cloned by vegetative reproduction $\checkmark /$ asexual reproduction /tissue culture/grafting
- A plant with the desired characteristics is selected \checkmark
- A vegetative part of the "parent" plant structure is removed $\checkmark /($ examples) and
- placed inside a growth medium $\checkmark /$ (examples)
- and allowed to grow \checkmark

Any 4

2.4 2.4.1 Purple \checkmark

2.4.2 - When purple-flowering plants and white-flowering plants are crossed

- all the offspring have purple flowers $\checkmark /$ have no white flowers
2.4.3 - The two alleles for a characteristic \checkmark
- separate during meiosis \checkmark so that
- each gamete contains only one allele \checkmark for that characteristic
2.4.4

P_{1}	Phenotype Genotype	Purple Dd	x	Purple \checkmark Dd \checkmark
Meiosis				
	G/gametes	D, d $\underbrace{\text { d }}$ D, $d r$		
Fertilisation				
F_{1}	Genotype	DD;		\checkmark
	Phenotype	Pur		ite \checkmark^{*}

P_{1} and
$F_{1} \checkmark$
Meiosis and fertilisation \checkmark
*Compulsory $1+$ Any 5

OR

\mathbf{P}_{1}	Phenotype	Purple	x
	Genotype	Dd	Purple \checkmark
	Dd \checkmark		

Meiosis
Fertilisation

1 mark for correct gametes
1 mark for correct genotypes
F_{1}
Phenotype
P_{1} and
$F_{1} \checkmark$
Purple: White ${ }^{\text {* }}$
Meiosis and fertilisation \checkmark
*Compulsory 1 + Any 5

QUESTION 3

3.1 3.1.1 - The jaw is large in the chimpanzee \checkmark and small in Homo sapiens \checkmark

- The jaw/ palate is rectangular in the chimpanzee \checkmark and rounded in Homo sapiens \checkmark
- Large spaces between the teeth in the chimpanzee \checkmark and small/no spaces in Homo sapiens \checkmark
- Large canines/teeth in the chimpanzee \checkmark and small canines/teeth in Homo sapiens \checkmark

Any 1×2
(Mark first ONE only)
3.1.2 - The diet changed from eating raw food \checkmark in Australopithecus

- to a diet of cooked food \checkmark in Homo sapiens
3.1.3 (a) A transitional species shows intermediate characteristics between two genera/species \checkmark

OR

It has characteristics common to both the ancestor species and the species that follows \checkmark
(b) The jaw is smaller than that of the chimpanzee but larger than that of Homo sapiens $\checkmark \checkmark$

OR

The canines/ teeth are smaller than those of the chimpanzee but larger than those of Homo sapiens $\checkmark \checkmark$

OR

The jaw/ palate shape is more rounded than that of the chimpanzee but less rounded than that of Homo sapiens $\checkmark \checkmark$

Any 1×2
(Mark first ONE only)
3.2 3.2.1 - The bright colour pattern is associated with being poisonous \checkmark

- thus reducing predation \checkmark and
- improving the chances of survival \checkmark
3.2.2 - There is variation in the colour of kingsnakes \checkmark
- Some are bright in colour $\checkmark /$ resemble the coral snakes and
- the others are dull in colour \checkmark
- Those with dull colours are killed \checkmark by predators
- Those with bright colours are not eaten \checkmark
- so they survive \checkmark and reproduce,
- passing on the allele for bright colour to the next generation \checkmark

Any 6
3.3 3.3.1 1900
3.3.2 $\left\{\frac{80}{20}\right\} \checkmark \times 100 \checkmark=400 \checkmark \%$

> OR
$\left\{\frac{(100-20)}{20}\right\} \checkmark \times 100 \checkmark=400 \checkmark \%$
3.3.3

T \checkmark	
Natural selection	Artificial selection
The environment or nature is the selective force \checkmark	Humans represent the selective force \checkmark
Selection is in response to suitability to the environment \checkmark	Selection is in response to satisfying human needs \checkmark
Occurs within a species \checkmark	May involve one or more species \checkmark (as in cross breeding)

(Mark first TWO only)
3.4 3.4.1 - They invade farm fields \checkmark

- They outcompete the crop plants for space \checkmark Any
3.4.2 (a) Type of herbicide \checkmark
(b) Time taken for development of resistance \checkmark
3.4.3 (a) Dicloflop \checkmark
(b) Trifluralin \checkmark
3.4.4 (a) - They would apply the herbicide to the weed \checkmark and
- observe if the weed survives \checkmark over many generations
(b) - They used the same weed species as other weed species may have developed resistance to that herbicide \checkmark
- Each weed species may respond differently \checkmark to a herbicide

OR

- It allows for a single variable \checkmark
- to which all results can be attributed \checkmark
3.4 .5

Guideline for assessing the graph

Type: Bar graph drawn (T)	1
Title of graph	1
Correct: - Scale for Y -axis and - Width and interval of bars on Xaxis	1
Correct: - Label for X-axis and - Label and unit for Y -axis	1
Plotting of bars	1-1 to 4 bars plotted correctly 2- All 5 bars plotted correctly

SECTION C

QUESTION 4

Structure (S)

- RNA is single stranded \checkmark
- and is made up of nucleotides \checkmark which comprise:
- ribose \checkmark sugar
- phosphate \checkmark group
- nitrogenous bases \checkmark which are
- adenine, uracil, guanine and cytosine \checkmark / (A, U, G and C)
- The phosphate group is attached to the ribose sugar \checkmark
- and the nitrogenous base is attached to the ribose sugar \checkmark
- Bases on RNA are arranged in triplets \checkmark
- as codons on mRNA \checkmark
- and anticodons on tRNA \checkmark
- tRNA has a clover-leaf \checkmark /hairpin structure
- tRNA has a place of attachment for an amino acid \checkmark

Involvement in protein synthesis (P)

- mRNA \checkmark forms
- during transcription $\checkmark /$ by copying the coded message from DNA
- and moves out of the nucleus \checkmark
- and attaches to the ribosome \checkmark
- During translation \checkmark
- the anticodon matches the codon \checkmark
- tRNA
- brings the required amino acid \checkmark to the ribosome
- Amino acids become attached by peptide bonds \checkmark
- to form the required protein \checkmark

Any
(8)

Content:
Synthesis:
Any

ASSESSING THE PRESENTATION OF THE ESSAY

Criterion	Relevance (R)	Logical sequence (L)	Comprehensive (C)
Generally	All information provided is relevant to the question	Ideas are arranged in a logical/cause-effect sequence	All aspects required by the essay have been sufficiently addressed
In this essay in Q4	Only information relevant to the: $-\quad$ structure of RNA and involvement of the different types of RNA in protein synthesis is given There is no irrelevant information	All the information regarding the $-\quad$ structure of RNA and the involvement of the different types of RNA in protein synthesis is given in a logical manner	At least: $-\mathbf{6 / 9}$ correct points for the structure of RNA (S) $-5 / 8$ for the involvement in protein synthesis (P)
Mark	1	1	1

