This memorandum consists of 12 pages.
PRINCIPLES RELATED TO MARKING LIFE SCIENCES 2011

1. If more information than marks allocated is given
 Stop marking when maximum marks is reached and put a wavy line and ‘max’ in the right hand margin.

2. If, for example, three reasons are required and five are given
 Mark the first three irrespective of whether all or some are correct/incorrect.

3. If whole process is given when only part of it is required
 Read all and credit relevant part.

4. If comparisons are asked for and descriptions are given
 Accept if differences/similarities are clear.

5. If tabulation is required but paragraphs are given
 Candidates will lose marks for not tabulating.

6. If diagrams are given with annotations when descriptions are required
 Candidates will lose marks.

7. If flow charts are given instead of descriptions
 Candidates will lose marks.

8. If sequence is muddled and links do not make sense
 Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If sequence and links becomes correct again, resume credit.

9. Non-recognized abbreviations
 Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of answer if correct.

10. Wrong numbering
 If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.

11. If language used changes the intended meaning
 Do not accept.

12. Spelling errors
 If recognizable, accept, provided it does not mean something else in Life Sciences or if it is out of context.

13. If common names given in terminology
 Accept, provided it was accepted at the National memo discussion meeting.
14. **If only letter is asked for and only name is given (and vice versa)**
 No credit.

15. **If units are not given in measurements**
 Memorandum will allocate marks for units separately, except where it is already given in the question.

16. **Be sensitive to the sense of an answer, which may be stated in a different way.**

17. **Caption**
 Credit will be given for captions to all illustrations (diagrams, graphs, tables, etc.) except where it is already given in the question.

18. **Code-switching of official languages (terms and concepts)**
 A single word or two that appears in any official language other than the learners’ assessment language used to the greatest extent in his/her answers should be credited, if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.

19. No changes must be made to the marking memoranda. In exceptional cases, the Provincial Internal Moderator will consult with the National Internal Moderator (and the External moderators if necessary).

20. Only memoranda bearing the signatures of the National Internal Moderator and the UMALUSI moderators and distributed by the National Department of Basic Education via the Provinces must be used in the training of markers and in the marking.
SECTION A

QUESTION 1

1.1 1.1.1 B ✓ ✓ / (A)
 1.1.2 B ✓ ✓
 1.1.3 C ✓ ✓
 1.1.4 D ✓ ✓
 1.1.5 D ✓ ✓
 (5 x 2) (10)

1.2 1.2.1 (Scientific) theory ✓
 1.2.2 Eutrophication ✓
 1.2.3 (Bio)diversity ✓
 1.2.4 Palaeontology ✓
 1.2.5 Alien ✓ / Exotic / Invasive
 (5 x 1) (5)

1.3 1.3.1 None ✓ ✓
 1.3.2 Both A and B ✓ ✓ / A and B/ Both
 1.3.3 Both A and B ✓ ✓ / A and B/ Both
 1.3.4 A only ✓ ✓ / A
 1.3.5 Both A and B ✓ ✓ / A and B/ Both
 (5 x 2) (10)

1.4 1.4.1 2002 ✓
 1.4.2 The abalone will decrease ✓ ✓ / become extinct
 1.4.3 Species can become extinct ✓
 Loss of biodiversity ✓
 Upset the balance of ecosystems ✓
 (Mark first THREE answers only) (3)

 1.4.4 Limit the size caught ✓
 Limit the number / quotas caught ✓
 Limit the harvesting / collection area ✓
 License to harvests ✓
 Develop legislation ✓ to regulate harvesting
 Scientific research ✓ to inform legislation
 Minimal or no harvesting during breeding season ✓ / limited harvesting season
 Education and awareness of endangered species ✓
 Encourage mariculture ✓ / sea farming / agriculture
 Discouraging illegal market by government selling it at lower price ✓
 Stricter monitoring ✓
 Heavy penalties ✓
 Declare protected species ✓
 (Mark first TWO answers only) (2)

 (Mark first TWO answers only) (8)
1.5 1.5.1 (a) Mayfly nymph ✓ (1)
(b) Sludge worms ✓ (1)
(c) Leeches ✓ (1)

1.5.2 - The size/volume of the water samples must be the same ✓
- The samples must be taken at the same depth ✓
- Samples must be taken at the same time in all three areas ✓
- Use sterile/clean containers ✓

(Mark first TWO only) (any 2) (2)

1.5.3 - Wear rubber gloves/protective clothing when taking the samples ✓
so as not to get contaminated with germs ✓
- Samples should be taken by using a container/bottle attached to a string ✓ to avoid stepping too close to the river bank ✓ / prevent drowning/falling into water

(Mark first TWO only) (4)

1.5.4 The amount of O₂ decreases ✓ as the amount of waste decreases. ✓
When the amount of waste levels off ✓, the amount of oxygen increases ✓ until it becomes constant ✓

(any 4) (13)

1.6 1.6.1 Paleozoic Era ✓ (1)

1.6.2 (a) Paleozoic Era ✓ (1)
(b) Permian ✓ (1)

1.6.3 Cretaceous extinction ✓ (1)

(4)

TOTAL SECTION A: 50
SECTION B

QUESTION 2

2.1 2.1.1 (Allopatric) speciation

2.1.2 - There is genetic variation within the fishes
- The water level dropped and separates the fish into 3 populations
- The fishes lived under different environmental conditions had different sources of food
- The fishes underwent natural selection independently in each lake
- Only those fishes that were better suited to obtain the type of food available survived
- Continued natural selection in each lake over many generations resulted in each lake having species that were very different (genotypically and phenotypically) from species of other lakes
- These differences prevented them from interbreeding leading to the formation of new species

(7)

2.2 2.2.1 - crossing over takes place
- leading to an exchange of genetic material / recombination occur between homologous chromosomes
- random arrangement of chromosomes / independent assortment along the equator
- allow different combinations of chromosomes to move into each daughter cell thus leading to variation in the gametes produced

(6)

2.2.2 - Large number of gametes produced
- Gametes are different because they are produced by meiosis
- random fusion of gametes therefore the offspring produced will be genetically different

(4)

2.3

<table>
<thead>
<tr>
<th>Lamarck</th>
<th>Darwin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Law of use and disuse</td>
<td>1. Law of natural selection</td>
</tr>
<tr>
<td>2. The acquired characteristics are passed on to the next generation</td>
<td>2. Inherent genetic characteristics can be inherited from parents</td>
</tr>
<tr>
<td>3. Organisms have an internal drive to change / deterministic</td>
<td>3. Organisms do not have an internal drive to change / nature selects the best to survive</td>
</tr>
<tr>
<td>4. Individuals change</td>
<td>4. Populations change</td>
</tr>
<tr>
<td>5. Infers that no extinction because organisms adapt and therefore survive</td>
<td>5. Extinction occurs since organisms may have features that do not favour survival</td>
</tr>
</tbody>
</table>

No mark for table

(4)
2.4 Gill slits/arches are found in all the vertebrate embryos
A tail is found in all the vertebrate embryos
Notochord
Fish-like/tubular heart
Cephalisation

(Mark first THREE answers)

2.5 2.5.1 Desirable alleles can be selected and passed on to successive generations

2.5.2 Reduction of the gene pool passing on unfavourable characteristics such as the inability to adapt to new environments and increased ability to contract diseases easily. any

(3)

(2)

(3)

(5)

[30]
QUESTION 3

3.1 3.1.1

<table>
<thead>
<tr>
<th>GORILLA</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Smaller head ✓</td>
<td>1. Larger head ✓</td>
</tr>
<tr>
<td>2. Longer arms in relation to body ✓</td>
<td>2. Shorter arms in relation to body ✓</td>
</tr>
<tr>
<td>3. Opposable toes on feet ✓</td>
<td>3. No opposable toe on feet ✓</td>
</tr>
<tr>
<td>5. Hand bones longer ✓</td>
<td>5. Hand bones shorter ✓</td>
</tr>
<tr>
<td>6. Straight attachment between femur and pelvis ✓</td>
<td>6. Angular attachment between femur and pelvis ✓</td>
</tr>
<tr>
<td>7. Ribcage wide ✓</td>
<td>7. Ribcage narrow ✓</td>
</tr>
<tr>
<td>8. Thin tibia and fibula ✓</td>
<td>8. Thick tibia and fibula ✓</td>
</tr>
<tr>
<td>10. Shorter ✓ skeleton</td>
<td>10. Taller ✓ skeleton</td>
</tr>
<tr>
<td>11. Short vertebrate column ✓</td>
<td>11. Longer vertebrate column ✓</td>
</tr>
<tr>
<td>12. Short neck ✓</td>
<td>12. Long neck ✓</td>
</tr>
<tr>
<td>13. Small eye sockets ✓</td>
<td>13. Large eye sockets ✓</td>
</tr>
</tbody>
</table>

(Mark first THREE answers only) (any 3 x 2 = 6 + 1 for table) (7)

3.1.2
- Upright posture ✓
- Long upper arms ✓
- Freely rotating arms ✓
- Elbow joints allowing rotation of forearm ✓
- Rotate hands at least 180° ✓
- Flat nails instead of claws ✓/bare finger tips
- Opposable thumbs ✓ which work in opposite direction to their fingers
- Large brains/cranium compared to their body mass ✓
- Eyes in front ✓/binocular vision/stereoscopic vision
- Eyes with cones ✓/colour vision
- Sexual dimorphism ✓/distinct differences between male and female
- Olfactory brain centres reduced ✓/reduced sense of smell
- Parts of the brain that process information from the hands and eyes are enlarged ✓
- Two mammary glands only ✓

(Mark first THREE answers only) (any 3) (3)

3.2 3.2.1 Changes ✓ in the genetic code ✓/gene/structure of DNA (2)

3.2.2 Drugs chemicals ✓, radiation ✓, viruses ✓, high temperature ✓

(Mark first TWO answers only) (any 2) (2)

3.2.3 Neutral: has no effect ✓ on the structure and functioning of the organism ✓

Lethal: the mutated organism dies ✓ and the harmful characteristics are not passed on to the next generation ✓ (4) (8)
3.3 3.3.1 Air conditions ✓/exhaust fumes and normal air conditions (1)

3.3.2 Exhaust gases ✓ have a negative effect ✓/ positive effect/ no effect on the percentage of seeds that germinate ✓ (3)

3.3.3 She replicated the investigation three times ✓ ✓ (2)

3.3.4 Little/no O₂ in exhaust fumes ✓ compared to normal atmospheric air negatively affects germination in seeds. ✓

OR

More O₂ in normal atmospheric air ✓ compared to exhaust fumes favours germination ✓

OR

More CO/pollutants in exhaust fumes ✓ compared to normal atmospheric air ✓ negatively affects germination in seeds. ✓

OR

Less CO/pollutants in normal atmospheric air ✓ compared to exhaust fumes favours germination. ✓ (2)

3.3.5 (27 + 31 + 45) ✓ /103 ÷ 3 = 34,3% ✓ (2)

3.3.6 Education ✓

Monitoring ✓ of air quality

Developing and implementation of government policy/legislation ✓

Penalties for polluting air/soil ✓

Prevent the release of chemicals ✓

Report air pollution ✓

Filters on exhausts/catalytic converters ✓

Using alternative fuel ✓/reduce use of fossil fuels (Mark first TWO only) (12)

[30]

TOTAL SECTION B: 60
SECTION C

QUESTION 4

4.1 4.1.1 Changes in the population size\(^\text{✓}\) of dark peppered moths /and the amount of pollution \(^\text{✓}\) over time\(^\text{✓}\) \(\text{(2)}\)

4.1.2 Population size\(^\text{✓}\)/amount of pollution \(\text{(1)}\)

4.1.3 As the pollution increases\(^\text{✓}\) the number of dark peppered moths increase\(^\text{✓}\)

 OR

 As the pollution decreases\(^\text{✓}\) the number of dark peppered moths decrease\(^\text{✓}\) \(\text{(2)}\)

4.1.4

Population size of dark peppered moth and amount of pollution over a period of time

\[\begin{array}{c|c|c}
\text{Time/Year} & \text{Population size (as % of the total population)} & \text{Amount of pollution (g/m}^3) \\
\hline
1750 & 0 & 155 \\
1760 & 20 & 150 \\
1770 & 40 & 145 \\
1780 & 60 & 140 \\
1790 & 80 & 135 \\
1800 & 100 & 130 \\
1810 & 120 & 125 \\
1820 & 140 & 120 \\
1830 & 160 & 115 \\
\end{array}\]

\(\text{Rubric for the mark allocation of the graph}\)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct type of graph</td>
<td>1</td>
</tr>
<tr>
<td>Caption for graph</td>
<td>1</td>
</tr>
<tr>
<td>Correct label for X-axis</td>
<td>1</td>
</tr>
<tr>
<td>Graphs labelled/key provided for 2 graphs</td>
<td>1</td>
</tr>
<tr>
<td>Correct label for Y-axis including \text{units}</td>
<td>1</td>
</tr>
<tr>
<td>Appropriate scale for X-axis</td>
<td>1</td>
</tr>
<tr>
<td>Appropriate scale for Y-axis</td>
<td>1</td>
</tr>
</tbody>
</table>
| Drawing of graphs | 1 – 1 to 8 points plotted correctly
 2 – 8 to15 points plotted correctly
 3 – all 16 points plotted correctly |
| All points joined for graph A | 1 |
| All points joined for graph B | 1 |

\text{NOTE:}

- If the wrong type of graph is drawn:
 - Marks will be lost for ‘correct type of graph’
 - Marks will be lost for ‘joining of points’

- If graphs are not drawn on the same system of axes:
 - Mark the first graph only using the given criteria

- If axes are transposed:
 - Marks will be lost for labelling of ‘X-axis’ and ‘Y-axis’

\(\text{(12)}\)

\(\text{(17)}\)
4.2 4.2.1 Biodegradable – Products that can be broken down by organisms such as bacteria and fungi e.g. any organic waste / faeces / vegetable matter, etc. (2)

Non-biodegradable – Products that cannot be broken down by organisms such as bacteria and fungi e.g. glass / plastic, etc. (2)

4.2.2 200 x 100 = 50% 400 (2)

4.2.3 280 years (1)

4.2.4 Health risk
Aesthetics of the environment will be degraded (any 1)
Chemicals can be released into the environment
Negative impact on food chain / biotic components
Attract scavengers (any 1) (1)
4.3 Management strategies to improve the quality of water

- Legislation / monitoring of emissions from industries to discourage water pollution
- Provide adequate sewage systems so that people do not urinate or pass faeces near a source of water
- Provide clean containers to collect water so that pollutants do not contaminate the water
- Educate people on the importance of caring for our environment
- Reduce the use of pesticides so that less run off to our rivers
- Provide purified/safe water to everyone to avoid use of contaminated water.
- Conduct research to find ways of reducing pollution.

(Mark first FOUR only) (4 x 2) (8)

Sources of water pollution
- Sewage
- Waste from factories
- Dumping of rubbish/waste
- Soap and chemicals entering the water

(Mark first TWO only) (2)

Effects on human physiology and health
- Gastroenteritis
- Cancer
- Typhoid
- Allergies
- Cholera
- Diarrhoea
- Infections/rashes

(Mark first TWO only) (2)

Content (12)

ASSESSING THE PRESENTATION OF THE ESSAY

<table>
<thead>
<tr>
<th>Marks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Well structured – demonstrates insight and understanding of question</td>
</tr>
<tr>
<td>2</td>
<td>Minor gaps in the logic and flow of the answer</td>
</tr>
<tr>
<td>1</td>
<td>Attempted but with significant gaps in the logic and flow of the answer</td>
</tr>
<tr>
<td>0</td>
<td>Not attempted/nothing written other than question number/ All irrelevant information</td>
</tr>
</tbody>
</table>

Synthesis (3) (15)

TOTAL SECTION C: 40
GRAND TOTAL: 150