
IEB Copyright © 2014 PLEASE TURN OVER

NATIONAL SENIOR CERTIFICATE EXAMINATION
NOVEMBER 2014

INFORMATION TECHNOLOGY: PAPER II

Time: 3 hours 120 marks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

1. This question paper consists of 12 pages. Please check that your question paper is

complete.

2. This question paper is to be answered using Object-Oriented Programming principles. Your

program must make sensible use of methods and parameters.

3. This paper is divided into two sections. All candidates must answer both sections.

4. This paper is set in programming terms that are not specific to any particular programming

language (Java/Delphi) or database (Access/MySQL).

5. Make sure that you answer the questions in the manner described because marks will be

awarded for your solution according to the specifications that are given in the question.

6. Only answer what is asked in each question. For example, if the question does not ask for

data validation, then no marks are awarded for it, and therefore no code needs to be written.

7. If you cannot get a section of code to work, comment it out so that it will not be executed

and so that you can continue with the examination. If possible, try to explain the error to
aid the marker.

8. When accessing files from within your code, DO NOT use full path names of the file, as

this will create problems when the program is marked on a computer other than the one you
are writing on. Merely refer to the files using their names and extensions, where necessary.

9. Your programs must be coded in such a way that they will work with any data and not just

the sample data supplied or any data extracts that appear in the question paper. You are
advised to look at the supplied data files carefully.

10. Make sure that routines such as searches, sorts and selections are developed from first

principles, and that you do not use the built-in features of a programming language for any
of these routines.

11. All data structures must be defined and declared by you, the programmer. You may not use

components provided within the interface to store and later retrieve data.

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 2 of 12

IEB Copyright © 2014

12. Read the whole question paper before you choose a data structure. You may find that there
could be an alternative method of representing the data which will be more efficient
considering the questions that are asked in the paper.

13. You must save all your work regularly on the disk you have been given, or the disk space

allocated to you for this examination.

14. If there is a technical interruption that prevents you from writing your examination, e.g. a

power failure, when you resume writing your examinations, you will only be given the time
that was remaining when the interruption began. No extra time will be given to catch up on
work that was not saved.

15. Make sure that your examination number appears as a comment in every program that you

code as well as on every page of hard copy that you hand in.

16. Print a code listing of all the programs/classes that you code. Printing must be done after

the examination. You will be given half an hour to print after the examination is finished.
Your teacher will tell you what arrangements have been made for the printing of your
work.

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 3 of 12

IEB Copyright © 2014 PLEASE TURN OVER

SCENARIO

LuxAir is a domestic airline that specialises in flying high profile people to domestic
locations. They have a small number of customers who fly with them on a regular basis.
They require various IT solutions to manage baggage, ticket and flight details.

SECTION A STRUCTURED QUERY LANGUAGE

When a passenger checks in for a flight they can check in one or more items of baggage
which are loaded onto the plane. Each item of baggage is weighed and the type of baggage
together with the insured value of its contents are recorded. A passenger can have multiple
items of baggage for a flight. Alternatively passengers can choose to take small items of
luggage on the plane as hand luggage. Hand luggage items are not recorded. When an item
of baggage is damaged, stolen or lost it is reported by the passenger and recorded by the
airline. For simplicity of this examination, we will assume that each passenger only has one
flight.

The database contains three tables. The first table Passengers contains the details of each
passenger including their name, flight number and destination. The second table Baggage
contains information about each item of baggage that is checked in. There may be multiple
items of baggage for each passenger. The third table Claims contains details of damaged,
lost or stolen baggage. You are required to extract some useful information from the
database that stores information of passengers' baggage.

The fields in the database are discussed below. Below each description is a screen-shot of
the first 10 rows of data for your convenience. The tables do contain more data:

Passengers
PassengerID This integer field assigns each passenger a unique ID number.
FullName This text field contains the names of the passengers.
Flight This text field contains the flight that the passenger is on. Note that each

passenger is only linked to one flight.
Destination This text field contains the destination the passenger is flying to.

PassengerID Fullname Flight Destination

1 Emma Glenn FL101 Cape Town

2 Veda Bennett FL203 Durban

3 Burton Wiley FL405 Johannesburg
4 Zoe Rose FL101 Cape Town

5 Alma Berg FL405 Johannesburg
6 Calvin Rodgers FL405 Johannesburg
7 Evelyn Wagner FL203 Durban

8 Macy Mullins FL405 Johannesburg
9 Nero Mercado FL405 Johannesburg

10 Kimberly Lawrence FL101 Cape Town

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 4 of 12

IEB Copyright © 2014

Baggage
BaggageID This integer field contains a unique ID for each item of baggage.
PassengerID This integer field contains the ID of the passenger that the baggage belongs

to. This field is a foreign key to the Passengers table.
Weight This real/double field contains the weight of the item of baggage in

kilograms.
CheckInCounter This integer field contains the number of the check-in counter where the item

of baggage was weighed.
BaggageType This text field contains the type of baggage. Possible values are 'Suitcase',

'Sporting Equipment', 'Parcel', 'Other'.
InsuredValue This real/double field contains the value of the contents of the item of

baggage.
Fragile This Boolean field indicates whether the item of baggage is considered to

contain fragile contents or not.

BaggageID PassengerID Weight CheckInCounter BaggageType InsuredValue Fragile

105640 61 28.93 1 Sporting Equipment 1648.1 True

106310 53 7.14 1 Parcel 1249.2 True

108210 50 1.57 2 Other 2054.1 False

112896 13 15.74 1 Sporting Equipment 710.8 False

114047 26 2.0 1 Suitcase 1729.7 True

117502 65 21.45 4 Other 693.3 False

119910 43 23.66 3 Other 2420.7 True

120622 30 20.24 2 Sporting Equipment 563.5 False

123568 33 24.69 3 Parcel 1515.4 True

130349 73 21.64 4 Parcel 148.7 True

Claims
ClaimID This integer field contains the unique ID of the Claim. This field is NOT an

autonumber.
BaggageID This integer field contains the ID of the Baggage item that the claim relates to. This

field is a foreign key to the Baggage table.
Description This text field contains a description of how the baggage loss occurred. Possible

values are 'Theft', 'Breakage', 'Lost in Transit' and 'Other'.
Reference This text field contains a reference the airline gives to passengers so that they can

track their claims. The contents have intentionally been left blank.

ClaimID BaggageID Description Reference

1 978472 Other

2 418006 Other

3 119910 Breakage

4 879591 Lost in Transit

5 900899 Breakage

6 117502 Theft

7 555325 Theft

8 130349 Other

9 895701 Breakage

10 596430 Other

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 5 of 12

IEB Copyright © 2014 PLEASE TURN OVER

QUESTION 1

1.1 Write a query that will list all the details of all Passengers travelling to Cape Town. (3)

1.2 Write a query that will display each type of baggage from the Baggage table. Your

query should display each BaggageType only once. An example of the output is
given below: (3)

BaggageType

Other

Parcel

Sporting Equipment

Suitcase

1.3 Francis Porter's suitcase has been stolen (BaggageID 240402). Write a SQL

statement which will add an entry to the Claims table using 16 as the ClaimID for
your new entry. (4)

1.4 Shana Woodward (PassengerID 14) has decided that she would rather take her
baggage on the plane as hand luggage and not check it in. Write a query that will
remove all entries about her baggage from the Baggage table. (2)

1.5 The Reference field in the Claims table has been left blank. The airline would like

to generate a reference number for each claim using the first two letters of the
Description and the last four digits of the BaggageID in the Claims table. Write a
query that will update the Reference field for all claims. After running your query
the contents of the Claims table should appear as follows: (5)

ClaimID BaggageID Description Reference

1 978472 Other Ot8472

2 418006 Other Ot8006

3 119910 Breakage Br9910

4 879591 Lost in Transit Lo9591

5 900899 Breakage Br0899

6 117502 Theft Th7502

7 555325 Theft Th5325

8 130349 Other Ot0349

9 895701 Breakage Br5701

10 596430 Other Ot6430

11 108210 Breakage Br8210

12 883064 Breakage Br3064

13 180426 Breakage Br0426

14 585953 Theft Th5953

15 892992 Breakage Br2992

1.6 Passengers have booked in more than one item of baggage. Write a query that will

show the total weight of each passenger's baggage items. Call the total weight of
each person's baggage TotalWeight. Order the results in descending order of total
weight. The airline needs to determine the total weight booked by a passenger. (6)

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 6 of 12

IEB Copyright © 2014

1.7 Write a query which will display the InsuredValue and Weight of each item of
baggage classified as 'Sporting Equipment' or 'Other' as well as the name of the
passenger that owns the baggage. An example of the first 5 rows of output is shown
below: (5)

Fullname InsuredValue Weight

Cheryl Booth 1648.1 28.93

Amery Harvey 2054.1 1.57

Tyrone Holt 710.8 15.74

Suki Baldwin 693.3 21.45

Barry Chaney 2420.7 23.66

1.8 Write a query which will list the Fullname of any passenger that does not have

checked in baggage (i.e. all passengers whose PassengerID does not appear in the
Baggage table). An example of the output is given below: (Note: Shana
Woodward will only appear in the result of this query if you successfully
executed the query in Question 1.4.) (5)

Fullname

Alma Berg

Shana Woodward

Georgia Macias

Hop Hull

Clarke May

Elvis Stewart

Benjamin Shannon

Colleen Mann

Nayda Rose

Davis William

Aimee Osborne

Asher Graves

1.9 Write a query which will display all the details of all fragile Baggage that was

checked in at CheckInCounter 6 which has an InsuredValue greater than the
average InsuredValue of all Baggage. An example of the output is given below: (7)

BaggageID PassengerID Weight CheckInCounter BaggageType InsuredValue Fragile

157491 2 12.11 6 Sporting Equipment 1784.2 True

240402 11 19.57 6 Suitcase 2326.2 True

335841 38 17.95 6 Suitcase 2255.6 True

596430 6 8.72 6 Sporting Equipment 1746.8 True

615505 47 23.01 6 Sporting Equipment 2207.8 True

723694 38 12.35 6 Other 1649.9 True

989365 37 10.35 6 Suitcase 2014.6 True

40 marks

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 7 of 12

IEB Copyright © 2014 PLEASE TURN OVER

SECTION B OBJECT ORIENTED PROGRAMMING

LuxAir needs to be able to keep track of all passengers' tickets for their domestic flights.
For each journey a passenger is provided with a single ticket. A ticket consists of a unique
ticket number and the passenger's name. In addition each ticket contains information on the
departing flight and the returning flight. The structure is therefore as follows:

Each Ticket contains the following information:
 TicketID
 Full name of the passenger
 Departing Flight – the flight to the passenger's destination
 Returning Flight – the return flight from the passenger's destination

Each Flight (whether it is a Departing Flight or Returning Flight) contains the following
information:
 Code – the flight number of the flight.
 Origin – the location that the flight leaves from (as a three letter code).
 Destination – the destination the flight will arrive at (as a three letter code).
 Departure Time – the date and time that the flight leaves the origin.
 Arrival Time – the date and time that the flight arrives at its destination.
 Cost – the total cost of that flight.

In addition the following information is relevant:
 All flights take off at their origin and land at their destination on the same day (i.e. there

are no overnight flights).
 Every ticket is a return ticket. This means that the passenger will return to the same

location that they departed from.
 Each passenger has booked multiple tickets.

An example for Julian Vincent of a departure and return flight between Durban (DUR) and
Port Elizabeth (PLZ) is as follows:

TICKETID 217085910 NAME Jillian Vincent

Departing Flight Returning Flight
Code YP794 Code YP689
Origin DUR Origin PLZ
Destination PLZ Destination DUR
Departure Time 2014-12-08 09:55 Departure Time 2014-12-12 16:45
Arrival Time 2014-12-08 11:00 Arrival Time 2014-12-12 17:45
Cost 975.58 Cost 1036.54

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 8 of 12

IEB Copyright © 2014

You have been given a file called tickets.txt which contains the information for a number
of tickets. A sample of the first 15 lines of the file is given below:

105255264#Jillian Vincent
YP794#DUR#PLZ#2014-12-08 09:55#2014-12-08 11:00#975.58
YP689#PLZ#DUR#2014-12-12 16:45#2014-12-12 17:45#1036.54
111864400#Barbara Knapp
AS976#PLZ#CPT#2015-01-24 10:05#2015-01-24 12:10#1036.47
DM137#CPT#PLZ#2015-01-25 19:00#2015-01-25 20:45#1128.36
113612810#Wanda Hutchinson
WJ455#JNB#PLZ#2015-04-19 11:45#2015-04-19 13:15#997.52
WJ377#PLZ#JNB#2015-04-28 20:15#2015-04-28 21:40#783.21
115194993#Brendan Montgomery
CA916#JNB#CPT#2015-03-21 07:05#2015-03-21 09:10#705.25
CA177#CPT#JNB#2015-03-30 18:00#2015-03-30 20:00#987.54
115907703#Teegan Lawrence
CA916#JNB#CPT#2015-03-10 07:05#2015-03-10 09:10#705.25
CA177#CPT#JNB#2015-03-11 18:00#2015-03-11 20:00#987.54

A single ticket's data is spread over exactly THREE lines in the file. In other words ONE
ticket is represented by THREE consecutive lines in the text file. In the example above
there are 5 separate tickets shown. Lines 1 – 3 contain the first ticket's information; lines
4 – 6 contain the second ticket's information; lines 7 – 9 contain the third ticket's
information and so on. The ticket's data is structured as follows:

 Line 1 of each ticket – Ticket Information in the following format

‒ ticketid#passengername
 Line 2 of each ticket – Departing Flight's information in the following format

‒ code#origin#destination#departureTime#arrivalTime#cost
 Line 3 of each ticket – Returning Flight's information in the following format

‒ code#origin#destination#departureTime#arrivalTime#cost

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 9 of 12

IEB Copyright © 2014 PLEASE TURN OVER

QUESTION 2

Use the class diagram below to create a new class called Flight. This class will be used to
create objects that will store the details of an individual flight. Note that this object can be
used to store either a departing or a returning flight. The class diagram below indicates the
fields and methods that are required.

Flight
Fields:
- String code
- String origin
- String destination
- String departureTime
- String arrivalTime
- double cost
Methods:
+ Constructor(String cde, String orig, String dest, String dtime, String atime, double cst)
+ getCode() : String
+ getDepartureTime() : String
+ getCost() : double
+ toString() : String

2.1 Write code to create a new class called Flight. (1)

2.2 Write code to define the six fields for the Flight class as indicated in the above class

diagram. (3)

2.3 Write code to create a constructor method that will assign values to the fields of the

Flight class. (3)

2.4 Write code to create accessor methods for the code, cost and departureTime fields. (3)

2.5 Write code to create a toString method which will return a String comprised of the

details of the flight in the following format:

 code<tab>origin<space>departureTime<tab>destination<space>arrivalTime

 for example:

 YP794 DUR 2014-12-08 09:55 PLZ 2014-12-08 11:00 (4)
 [14]

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 10 of 12

IEB Copyright © 2014

QUESTION 3

Use the class diagram below to create a new class called Ticket. This class will be used to
store the details of a single ticket for a passenger. The first two fields will store the ticket
number and the passenger name. The next two fields will be Flight objects (the class
created in the previous question). The class diagram below indicates the fields and methods
that are required.

Ticket
Fields:
- String ticketID
- String name
- Flight departingFlight
- Flight returningFlight
Methods:
+ Constructor(String tID, String nme, Flight dflight, Flight rflight)
+ getName() : String
+ getDepartingFlight() : Flight
+ getReturningFlight() : Flight
+ getTotalCost() : double
+ toString() : String

3.1 Write code to create a new class called Ticket. (1)

3.2 Write code to define four fields that will store the ticketID, name, departingFlight
and returningFlight associated with a ticket. Choose appropriate data types for
these fields but note that the departingFlight and returningFlight fields are
objects of the class Flight. These fields should not be visible from outside the class. (3)

3.3 Write code to create a constructor method that will assign values to all the fields of
the Ticket class. Note that in addition to the code and name parameters you are
required to pass two Flight objects as parameters into the constructor. (3)

3.4 Write code to create accessor method for the name field. (1)

3.5 Write code to create accessor methods for the departingFlight and
returningFlight fields. Both of these accessor methods should return the respective
Flight objects. (2)

3.6 Write code to create a method called getTotalCost. This method should return a
real number representing the total cost of the ticket. This can be calculated by
adding the cost of the departingFlight to the cost of the returningFlight. (2)

3.7 Write code to create a toString method which will return a string comprised of the
information for the ticket as well as the two flights contained in the ticket. The
string returned should be in the following format:

 ticketID<tab>name<tab>totalcost<newline>
 departingFlightInformation<newline>
 returningFlightInformation<newline>

 for example:

105255264 Jillian Vincent R 2012.12
YP794 DUR 2014-12-08 09:55 PLZ 2014-12-08 11:00

 YP689 PLZ 2014-12-12 16:45 DUR 2014-12-12 17:45 (3)
 [15]

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 11 of 12

IEB Copyright © 2014 PLEASE TURN OVER

QUESTION 4

4.1 Write code to create a new class called FlightManager. (1)

4.2 Write code to declare two instance variables in the class. The first being an array

that can be used to store up to 500 Ticket objects. The second being an integer
counter to keep track of how many Tickets are stored in the array. (3)

4.3 Write code to create a constructor method that will read the contents of the file

tickets.txt. Each three lines that you read will result in one Ticket object being
added to the array. Do the following:

 Check if the file exists. If it does not, display an error message.
 Open the file for reading.
 Loop through the file until there are no more lines. In each iteration of the loop:

‒ Read the first line of each ticket and split the Ticket data contained in that
line into the ticket number and ticket name.

‒ Read the second line of the ticket and split the Flight data contained in that
line into the flight code, origin, destination, departure time, arrival time and
cost. This data represents the departing flight.

‒ Read the third line of the ticket and split the Flight data contained in that
line into the flight code, origin, destination, departure time and cost. This
data represents the returning flight.

‒ Create a Flight object representing the departing flight using the data you
read from the second line.

‒ Create a Flight object representing the returning flight using the data you
read from the third line.

‒ Create a Ticket object using the ticket data from the first line and the TWO
Flight objects you created.

‒ Add the Ticket object at the end of the array. (15)

4.4 Write code that will create a method called allTickets. This method should return a

string that contains the information of all tickets. Use the object's toString methods
that you created in the questions above. Each ticket's details should be separated by
a blank line. (5)

4.5 Write code to create a method called sort. This method should sort the array of
tickets based on the departure time of the departing flight of each ticket in
ascending order. In other words the data should start with the ticket which has the
earliest departing flight. (8)

 [32]

NATIONAL SENIOR CERTIFICATE: INFORMATION TECHNOLOGY: PAPER II Page 12 of 12

IEB Copyright © 2014

QUESTION 5

5.1 Write code to create a simple user interface called FlightUI which will allow simple

output. (1)

5.2 Declare and instantiate a FlightManager object at the appropriate place in the code. (1)

5.3 Write code that will display all the tickets in sorted order by calling the appropriate

methods in the FlightManager class. You must call the methods in the following
order:

Sort
All Tickets (2)

 [4]

QUESTION 6

LuxAir wishes to find out which passenger flies the most. They want to determine this by
calculating the total amount of time (in minutes) that each passenger spends flying. For any
one particular ticket the duration of the departing flight is added to the duration of the
returning flight. A passenger's total travelling time is calculated by summing the duration of
all their tickets.

6.1 Write code to add a method in the appropriate class that will determine the duration

of each flight. A flight's duration is the difference between the number of minutes of
the departure time and the number of minutes of the arrival time of that flight. Your
method must return the duration in minutes of a flight. (4)

6.2 Write code to add a method called frequentFlyer in the appropriate class which
will return a string containing the name and total duration (in minutes) of the
passenger with the most total flying time. This method should add up the flying
duration for each passenger's tickets and determine which passenger has the most
flying time. You may add any other helper methods in any of the classes as part of
your solution. Marks will be awarded for efficiency of code. (10)

6.3 Add a call statement in the FlightUI interface which will allow the user to display
the most frequent flyer with an appropriate heading. The results should be as
follows: (1)

Most Frequent Flyer

Wanda Hutchinson 1505

 [15]

80 marks

Total: 120 marks

