NATIONAL SENIOR CERTIFICATE EXAMINATION

2016

ENGINEERING GRAPHICS AND DESIGN

PAPER 2

MARKS: 200
 TIME: 3 HOURS

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

1. This question paper consists of 7 pages including the cover page and $\mathbf{4}$ questions.
2. All the questions must be answered.
3. Unless specified otherwise, all questions are in Third Angle Orthographic Projection.
4. Unless specified otherwise, all questions are to be completed to a scale of 1:1.
5. All answer sheets must be stapled in numerical order and handed in, even unattempted/blank questions.
6. All construction work must be shown, even if a stencil was used
7. Print your examination number neatly on each page.
8. Use only the answer sheets provided
9. Your drawings should be well presented and reflect neatness and accuracy. Marks will be deducted for untidy and inaccurate work.
10. Any dimensions or detail not given may be assumed in good proportion.
11. Stencils and calculators may be used.
12. All drawings must adhere to the SANS 10111-1.
13. In order to save time, detailed assembly parts must be drawn to convention.

FINAL CONVERTED MARK	
$\frac{100}{10}$	

Figure A

Figure C

Figure E

Figure B

Figure D

Figure F

Answer the following questions and print the correct answer in the space provided.

1.1 Which sectioned side view in Figure A is correct to convention? \qquad
1.2 What is feature 1 in Figure B called?
1.3 What is feature 2 in Figure C called?
1.4 What type of sectioning is shown by 3 in Figure C?
\qquad (1)
1.5 Calculate the dimension 4 in Figure C.
1.6 Calculate the dimension 5 in Figure C.
1.7 Calculate the dimension 6 in Figure D.
\qquad
\qquad

Calculate the dimension 7 in Figure D.
1.9 Calculate the dimension 8 in Figure D.
1.10 Calculate the dimension 9 in Figure E.
\qquad (1)
\qquad
1.12 What type of sectioning is shown by 11 in Figure E ?
1.13 Calculate the dimension 12 in Figure F.
\qquad
1.14 Is the thread in Figure E internal or external?
1.15 Figure G shows a machining symbol. Complete the table below by printing
the correct letter next to the corresponding phrase.
the correct letter next to the corresponding phrase.

Phrase	Letter
1.15.1 Production method	
1.15.2 Direction of lay	
1.15.3 Machine allowance	

1.16 Figure H shows a welding symbol. Complete the table below by printing the correct letter next to the corresponding phrase.

Phrase	Letter
1.16.1 Weld all around	
1.16.2 Welding process	
1.16.3 Welding symbol	

Figure G

Figure H

Given is the incomplete graph of displacement

of a wedge-ended follower as well as the centre of the cam shaft as shown by the given centrelines.

The graph of displacement has the following motion:
$\checkmark \quad 0^{\circ}-45^{\circ}$ the follower is at rest. (Given) (Uniform motion)
$\checkmark 45^{\circ}-60^{\circ}$ the follower falls 20 mm (Uniform motion)
$\checkmark \quad 60^{\circ}-90^{\circ}$ the follower is at rest
(Uniform motion)
(Uniform motion)
$90^{\circ}-120^{\circ}$ the follower falls 20 mm .
(Uniform motion)
$\checkmark 120^{\circ}-150^{\circ}$ the follower is at rest. (Uniform motion)
$\checkmark 150^{\circ}-180^{\circ}$ the follower falls $\mathbf{2 0 ~ m m}$ (Uniform motion)
$\checkmark 180^{\circ}-360^{\circ}$ the follower returns to its original position with simple harmonic motion.
The cam profile has the following specifications:

- The direction of turn is clockwise
$>$ The camshaft has a radius of 11 mm

Draw the following:

2. 1 the complete graph of displacement
a. 2 the cam profile.
a. 3 the wedge-ended follower (to your own
appropriate size and measurements).
2 a .4 the camshaft.
2a. 5 the direction of rotation
2a. 6 show all constructions. horizontal scale.

20 MARKS
EXAMINATION NUMBER

