

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**ELECTRICAL TECHNOLOGY: POWER SYSTEMS** 

**NOVEMBER 2018** 

**MARKS: 200** 

TIME: 3 hours

This question paper consists of 10 pages, a 2-page formula sheet and 1 answer sheet.

#### **INSTRUCTIONS AND INFORMATION**

- 1. This question paper consists of SIX questions.
- 2. Answer ALL the guestions.
- 3. Answer QUESTIONS 2.2.1 and 2.2.2 on the attached ANSWER SHEET.
- Write your CENTRE NUMBER and EXAMINATION NUMBER on the ANSWER SHEET and hand it in with your ANSWER BOOK, whether you have used it or not.
- 5. Sketches and diagrams must be large, neat and fully labelled.
- 6. Show ALL calculations and round off answers correctly to TWO decimal places.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. You may use a non-programmable calculator.
- 9. Show the units for ALL answers of calculations.
- 10. A formula sheet is provided at the end of this question paper.
- 11. Write neatly and legibly.

(2)

#### QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY (GENERIC)

- 1.1 Define the term *major incident* with reference to the Occupational Health and Safety Act, 1993 (Act 85 of 1993). (2)
- 1.2 State TWO general duties of manufacturers with regard to a product that will be used at the workplace. (2)
- 1.3 Explain why horseplay is an unsafe act in the workshop. (2)
- 1.4 State TWO procedures to protect yourself when helping a person who is being shocked by electricity. (2)
- 1.5 Define the term *qualitative risk analysis*. (2) **[10]**

#### QUESTION 2: RLC CIRCUITS (GENERIC)

- 2.1 Define the term *impedance* with reference to RLC circuits. (2)
- 2.2 Illustrate the phase relationship between current and voltage by drawing the waveforms of the following circuits on the ANSWER SHEET:
  - 2.2.1 Pure capacitive circuit (2)
  - 2.2.2 Pure inductive circuit
- 2.3 FIGURE 2.3 below shows an RLC series circuit that consists of a 12  $\Omega$  resistor, an inductor with a reactance of 22  $\Omega$  and a capacitor with a reactance of 36  $\Omega$ , all connected across a 60 V/60 Hz supply. Answer the questions that follow.

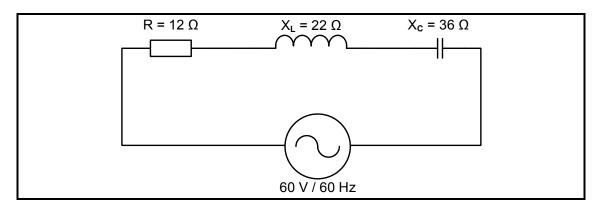



FIGURE 2.3: RLC SERIES CIRCUIT

#### Given:

 $R = 12 \Omega$   $X_L = 22 \Omega$   $X_C = 36 \Omega$   $V_S = 60 V$ f = 60 Hz

#### Calculate the:

- 2.3.1 Capacitance of the capacitor (3)
- 2.3.2 Inductance of the inductor (3)
- 2.3.3 Impedance of the circuit (3)
- 2.3.4 Total current through the circuit (3)
- 2.3.5 Reactive power at a phase angle of 50° (3)
- 2.4 Explain how the value of the inductive reactance will be affected if the supply frequency is doubled. (2)
- 2.5 Define the term *resonant frequency*. (2)
- 2.6 Refer to FIGURE 2.6 and answer the questions that follow.

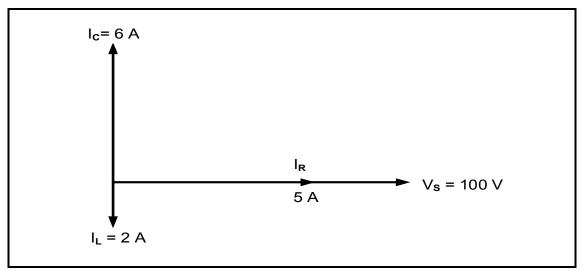



FIGURE 2.6: RLC PHASOR DIAGRAM

2.6.1 Calculate the following:

- (a) Inductive reactance (3)
- (b) Capacitive reactance (3)
- (c) Reactive current (3)
- (d) Total current (3)
- 2.6.2 State whether the phase angle is lagging or leading. (1)
- 2.7 Describe how a low resistance value affects the bandwidth of an LC tuned circuit.

(2) **[40]** 

### QUESTION 3: THREE-PHASE AC GENERATION (SPECIFIC)

3.1 State the size of the angles between the phases of a balanced three-phase AC generated waveform. (1) 3.2 Define the following terms: 3.2.1 Apparent power (2) 3.2.2 Power factor (2) 3.3 State THREE advantages for the supplier when the power factor improves. (3) 3.4 With reference to three-phase power generation: 3.4.1 State THREE disadvantages of single-phase AC generation. (3)3.4.2 Explain the advantage of connecting a three-phase alternator in star. (2) 3.5 Explain how copper losses are reduced in overhead transmission lines. (2) 3.6 A 380 V three-phase system supplies a star-connected inductive load. The input power to the load is 18 kW with a lagging power factor of 0,8. Given:  $V_1$ = 380 V18 kW  $P_{in}$  $Cos \theta = 0.8 lagging$ Calculate the: 3.6.1 Phase voltage (3) 3.6.2 Line current to the load (3) 3.6.3 Apparent power (3) 3.7 The two-wattmeter method is used to measure power of a three-phase motor. The readings on the wattmeters are 1,2 kW and 2,3 kW respectively. Answer the questions that follow. Given:  $P_1$ = 1.2 kW $P_2 = 2.3 \text{ kW}$ 3.7.1 Calculate the total input power to the motor. (3) 3.7.2 State THREE advantages of the two-wattmeter method over the three-wattmeter method. (3) [30]

## QUESTION 4: THREE-PHASE TRANSFORMERS (SPECIFIC)

- 4.1 Name THREE losses that occur in transformers. (3)
- 4.2 State TWO applications of a delta-star transformer. (2)
- 4.3 State TWO functions of the oil used in transformers. (2)
- 4.4 Describe the operation of a transformer. (5)
- 4.5 Explain why transformers have a better efficiency in comparison to other machines. (3)
- 4.6 State the purpose of the Buchholz relay in transformers. (2)
- 4.7 A three-phase transformer with 1 500 primary turns is connected in delta-star to a supply voltage of 2,2 kV. The primary line current is 30 A and the secondary line voltage is 380 V with a power factor of 0,9.

#### Given:

 $N_P$  = 1 500 turns  $V_P$  = 2,2 kV  $I_{L(P)}$  = 30 A  $V_{L(S)}$  = 380 V  $Cos \theta$  = 0,9 lagging

#### Calculate the:

- 4.7.1 Secondary phase voltage (3)
- 4.7.2 Transformation ratio (3)
- 4.7.3 Number of secondary turns (3)
- 4.8 A three-phase transformer with a turns ratio of 30 : 1 is connected in deltastar. Answer the questions that follow.
  - 4.8.1 Determine whether the transformer is a step-down or a step-up transformer. (1)
  - 4.8.2 Describe why the transformer can be used for distributing electrical power to domestic and industrial loads. (3)

    [30]

motor before commissioning.

5.2

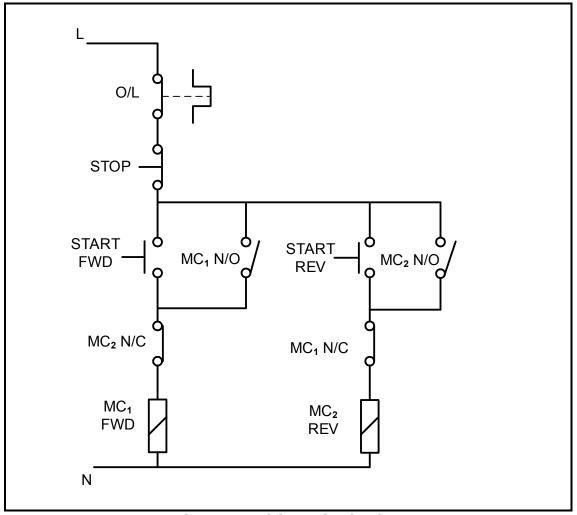
5.3

5.4

(2)

## QUESTION 5: THREE-PHASE MOTORS AND STARTERS (SPECIFIC)

5.1 TABLE 5.1 below shows the name plate of a three-phase induction motor. Answer the questions that follow.


TABLE 5.1: NAME PLATE OF A THREE-PHASE INDUCTION MOTOR

| MOTOR MANUFACTURER SPECIFICATION |             |  |  |  |  |  |
|----------------------------------|-------------|--|--|--|--|--|
| Phase                            | 3           |  |  |  |  |  |
| Voltage                          | 380 V       |  |  |  |  |  |
| Current                          | 1,3 A       |  |  |  |  |  |
| Speed                            | 1 500 r/min |  |  |  |  |  |
| Power                            | 7,5 kW      |  |  |  |  |  |
| Frequency                        | 50 Hz       |  |  |  |  |  |
| Cos θ                            | 0,8 lagging |  |  |  |  |  |
| Frame No.                        | 22SP27      |  |  |  |  |  |

| 5.1.1                                                                                  | State the amount of current the motor will draw from the supply at full load.   | (1) |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----|--|
| 5.1.2                                                                                  | Explain why the motor is suitable for use in South Africa.                      | (2) |  |
| 5.1.3                                                                                  | State what the 7,5 kW on the name plate indicates.                              | (1) |  |
| 5.1.4                                                                                  | Determine the total number of poles.                                            | (5) |  |
| 5.1.5                                                                                  | Calculate the efficiency of the motor at full load if the total loss is 1,2 kW. | (5) |  |
| Explain the purpose of no-volt protection with reference to motor control circuits.    |                                                                                 |     |  |
| Explain how the direction of rotation of a three-phase induction motor can be changed. |                                                                                 |     |  |

State TWO mechanical inspections that must be carried out on an induction

5.5 Refer to the control circuit diagram in FIGURE 5.5 and answer the following questions.



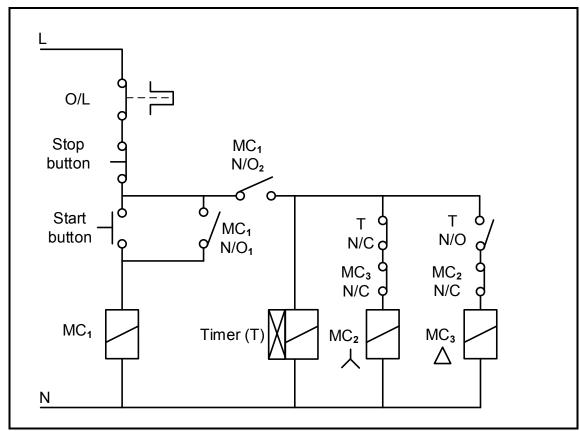
**FIGURE 5.5: CONTROL CIRCUIT** 

- 5.5.1 Identify the control circuit in FIGURE 5.5. (1)
- 5.5.2 State ONE application of the control circuit. (1)
- 5.5.3 State the purpose of the overload relay. (2)
- 5.5.4 Describe the operation of the control circuit. (5) [30]

6.9

(2)

(3)


## QUESTION 6: PROGRAMMABLE LOGIC CONTROLLERS (PLCs) (SPECIFIC)

6.1 State THREE disadvantages of hard wiring. (3) 6.2 Name the THREE steps that a PLC has to undergo to complete one programmed scan cycle. (3) 6.3 Explain the term *scan time* with reference to the scan cycle of a PLC. (2) 6.4 Refer to FIGURE 6.4 below and answer the questions that follow. FIGURE 6.4: NAND gate 6.4.1 Draw the ladder logic diagram. (3) 6.4.2 Draw the truth table for the NAND gate. (4) 6.5 Describe how a PLC achieves its function. (3) 6.6 With reference to analogue and digital inputs: 6.6.1 Give THREE examples of analogue input devices. (3) 6.6.2 Explain why an analogue input may be converted to a digital input. (4) 6.7 Describe how a PLC uses a relay to drive a motor. (3) 6.8 State the purpose of the timer function.

Copyright reserved Please turn over

Explain the *latching concept* with reference to retaining circuits.

6.10 Refer to FIGURE 6.10 below and answer the questions that follow.



**FIGURE 6.10: CONTROL CIRCUIT** 

|      | 6.10.1                                                                              | Identify the control circuit in FIGURE 6.10.                                                 | (1)                |  |  |  |
|------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------|--|--|--|
|      | 6.10.2                                                                              | Draw a ladder logic diagram that executes the same function as the one in FIGURE 6.10.       | (13)               |  |  |  |
|      | 6.10.3                                                                              | State the function of the MC <sub>1</sub> /NO <sub>1</sub> as used in ladder logic circuits. | (2)                |  |  |  |
|      | 6.10.4                                                                              | State why the N/C contact of $MC_3$ is connected in series with the star contactor.          | (2)                |  |  |  |
| 6.11 | Name T                                                                              | HREE types of motors used with variable speed drives (VSD).                                  | (3)                |  |  |  |
| 6.12 | Explain                                                                             | voltage frequency control with reference to VSD.                                             | (2)                |  |  |  |
| 6.13 | Explain the purpose of the braking resistor with reference to regenerative braking. |                                                                                              |                    |  |  |  |
| 6.14 | Explain                                                                             | the function of the VSD when used in motors.                                                 | (2)<br><b>[60]</b> |  |  |  |
|      |                                                                                     | TOTAL:                                                                                       | 200                |  |  |  |

## **FORMULA SHEET**

| FORMULA SHEET                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| THREE-PHASE AC GENERATION                                                                                                                                                                                                              | RLC CIRCUIT                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| STAR $V_L = \sqrt{3} \ V_{PH} \qquad \text{and} \qquad V_{PH} = I_{PH} \times Z_{PH}$ $I_L = I_{PH}$                                                                                                                                   | $X_{L} = 2\pi fL$ and $X_{c} = \frac{1}{2\pi fC}$ $f_{r} = \frac{1}{2\pi \sqrt{LC}}$                                                                                                                             |  |  |  |  |  |  |  |  |  |
| <b>DELTA</b> $V_{L} = V_{PH}  \text{and}  I_{L} = \sqrt{3} \times I_{PH}$ $V_{PH} = I_{PH} \times Z_{PH}$                                                                                                                              | SERIES $I_{T} = I_{R} = I_{C} = I_{L}$ $Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| POWER $S(P_{app}) = \sqrt{3} \times V_{L} \times I_{L}$ $Q(P_{R}) = \sqrt{3} \times V_{L} \times I_{L} \times \sin \theta$ $Cos \theta = \frac{P}{S}$ $P = \sqrt{3} \times V_{L} \times I_{L} \times \cos \theta$ TWO-WATTMETER METHOD | $V_{L} = I X_{L}  \text{and}  V_{C} = I X_{C}$ $V_{T} = I Z  \text{and}  V_{T} = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}}$ $I_{T} = \frac{V_{T}}{Z}$ $Cos \theta = \frac{R}{Z}$ $Cos \theta = \frac{V_{R}}{V_{S}}$ |  |  |  |  |  |  |  |  |  |
| THREE-PHASE TRANSFORMERS                                                                                                                                                                                                               | $\cos \theta = \frac{V_R}{V_S}$ $Q = \frac{X_L}{Z} = \frac{X_C}{Z} = \frac{V_L}{V_S} = \frac{V_C}{V_S} = \frac{1}{R} \sqrt{\frac{L}{C}}$                                                                         |  |  |  |  |  |  |  |  |  |
| STAR $V_{L} = \sqrt{3} V_{PH}  \text{and}  I_{L} = I_{PH}$                                                                                                                                                                             | PARALLEL $V_S = V_R = V_C = V_L$                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| <b>DELTA</b> $I_{L} = \sqrt{3} I_{PH}  \text{and}  V_{L} = V_{PH}$ <b>POWER</b> $S(P_{ADD}) = \sqrt{3} \times V_{L} \times I_{L}$                                                                                                      | $I_{R} = \frac{V_{R}}{R}  \text{and}  I_{C} = \frac{V_{C}}{X_{C}}$ $I_{L} = \frac{V_{L}}{X_{L}}$ $I_{T} = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$ $Cos\theta = \frac{I_{R}}{I_{T}}$                              |  |  |  |  |  |  |  |  |  |
| $S(P_{app}) = \sqrt{3} \times V_{L} \times I_{L}$ $Q(P_{R}) = \sqrt{3} \times V_{L} \times I_{L} \times \sin \theta$                                                                                                                   | $Cos\theta = \frac{{}^{1}R}{I_{T}}$ $Q = \frac{X_{L}}{Z} = \frac{X_{C}}{Z} = \frac{V_{L}}{V_{L}} = \frac{V_{C}}{V_{C}} = \frac{1}{R}\sqrt{\frac{L}{C}}$                                                          |  |  |  |  |  |  |  |  |  |

$$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \theta$$
$$S(P_{app}) = \sqrt{3} \times V_{L} \times I_{L}$$

$$S(P_{app}) = \sqrt{3} \times V_L \times I_L$$

$$\frac{V_{\text{ph(p)}}}{V_{\text{ph(s)}}} = \frac{N_{\text{p}}}{N_{\text{s}}} = \frac{I_{\text{ph(s)}}}{I_{\text{ph(p)}}}$$

#### **MOTOR SPEED**

$$n_s = \frac{60 \times 1}{p}$$

Slip = 
$$\frac{n_s - n_r}{n_s}$$

## THREE-PHASE MOTORS AND STARTERS

#### **STAR**

$$V_L = \sqrt{3} V_{PH}$$
 and  $I_L = I_{PH}$ 

## **DELTA**

$$I_L = \sqrt{3} I_{PH}$$
 and  $V_L = V_{PH}$ 

## **POWER**

$$S(P_{app}) = \sqrt{3} \times V_L \times I_L$$

$$Q(P_R) = \sqrt{3} \times V_L \times I_L \times \sin \theta$$

$$\cos \theta = \frac{P}{S}$$

$$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \theta$$

Efficiency 
$$(\eta) = \frac{P_{out}}{P_{in}} \times 100\%$$

$$P_{\text{IN}}\!=\!P_{\text{OUT}}\!+\!P_{\text{LOSSES}}$$

| <b>EXAMINATION NUMBER:</b> |  |  |  |  |  |  |  |
|----------------------------|--|--|--|--|--|--|--|
|                            |  |  |  |  |  |  |  |
| CENTRE NUMBER:             |  |  |  |  |  |  |  |

## **ANSWER SHEET**

## **QUESTION 2.2**

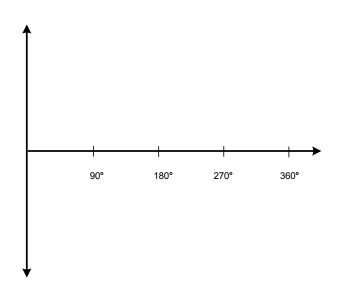



FIGURE 2.2.1 (2)

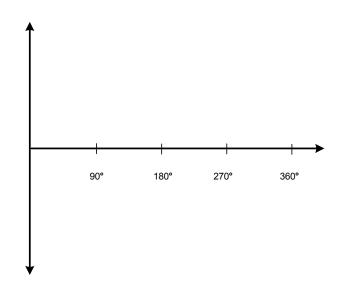



FIGURE 2.2.2 (2)