Answers to:

Mathematics
IEB 2017 Paper 2
Disclaimer:
These answers are developed by Advantage Learn as example solutions to the IEB (Independent Examinations Board) exam papers.

These answers can be freely downloaded, shared and printed for students to use to help them in preparing for their examinations. Advantage Learn does not produce the exam papers which are copyright of the IEB.

The IEB past exam papers are available freely on the internet. If you have any queries about the paper then please contact the IEB directly.

If you are looking for any of the question papers then you can find them on our website, https://advantagelearn.com.
QUESTION 1

How to use a Casio calculator for Regression modelling

Press:
MODE → 3:STAT → 2: A + Bx
Enter data into the x and y columns
Press: AC
To find A:
SHIFT → 1 → 5:Reg → 1:A → =
To find B:
SHIFT → 1 → 5:Reg → 2:B → =
To find r (correlation coefficient):
SHIFT → 1 → 5:Reg → 3:r → =
To find \(\hat{y} \) given \(\hat{x} \):
Enter \(\hat{x} \) - value → SHIFT → 1 → 5:Reg →
5: \(\hat{y} \) → =
To find the mean point \((\bar{x}; \bar{y})\):
SHIFT → 1 → 4:Var → 2: \(\bar{x} \) → =
SHIFT → 1 → 4:Var → 5: \(\bar{y} \) → =

How to use a Casio calculator to find Mean and Standard Deviation

Press:
MODE → 3:STAT → 1: 1 - VAR
Enter data into the x and FREQ columns

If no FREQ column then PRESS:
SHIFT → SET UP → page down → 4: STAT → 1: ON

Press: AC: →
To find the mean:
SHIFT → 1 → 4: Var → 2: \(\bar{x} \)

To find the standard deviation:
SHIFT → 1 → 4: Var → 3: \(\sigma x \)
Remember: \(variance = (\sigma x)^2 \)
NB: It is important that you are familiar with using your calculator for statistics questions such as regression modelling, finding means/variances, etc. We have attached above a step-by-step instruction guide on how to use your Casio calculator to compute these statistical operations.

a. $r = 0.7337$

b. C

c. $A = 0.6268$ and $B = 0.0264$

d. No, we should not use the regression line for a 30 day rest day, as this would be extrapolating data (since our given data values are relatively low and 30 is too high)

QUESTION 2

a. $m_{OA} = \frac{y_A - y_O}{x_A - x_O} = \frac{4 - 0}{2 - 0} = \frac{4}{2} = 2$

and $\tan A\hat{O}B = m_{OA}$

∴ $\tan A\hat{O}B = 2$

∴ $A\hat{O}B = 63,43^\circ$

b. To find the equation of the perpendicular bisector of line OA, we first need to see where the midpoint of line OA is (so that the perpendicular line cutting OA will bisect). Hence,

$midpt(OA) = \left(\frac{x_O + x_A}{2}, \frac{y_O + y_A}{2}\right) = (1; 2)$.

Now, for the line to be perpendicular to line OA, we must have:

$m_\perp = -\frac{1}{m_{OA}}$

$= -\frac{1}{2} \quad \therefore y = -\frac{1}{2} x + c$. Now sub. $(1; 2)$

∴ $2 = -\frac{1}{2} (1) + c$

∴ $c = \frac{5}{2}$

∴ $y = -\frac{1}{2} x + \frac{5}{2}$
c. We proceed in a similar manner to find the perpendicular bisector of OB:

\[
\text{midpt}(OB) = \left(\frac{x_O + x_B}{2}, \frac{y_O + y_B}{2} \right)
\]

\[
= (3; 0)
\]

Note that line OB is just a straight line on the \(x\)-axis, so the perpendicular bisector will be a vertical straight line passing through \(x = 3\). Hence the equation of the perpendicular bisector is \(x = 3\).

d. To get the equation of the circle passing through points \(O, A\) and \(B\), we use the two perpendicular bisectors to get the centre of the circle (we do this because of the important theorem, i.e., \textbf{The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord}), i.e., equate \(x = 3\) and

\[
y = -\frac{1}{2}x + \frac{5}{2}
\]

So, we get:

\[
y = -\frac{1}{2}(3) + \frac{5}{2}
\]

\[
\therefore y = 1
\]

Hence the centre of the circle is the point \((3; 1)\). We can now sub. any point on the circle to complete the equation \((x - 3)^2 + (y - 1)^2 = r^2\). For convenience, we will sub. point \(O(0; 0)\).

Thus:

\[
(0 - 3)^2 + (0 - 1)^2 = r^2
\]

\[
\therefore r^2 = 10
\]

\[
\therefore (x - 3)^2 + (y - 1)^2 = 10
\]

\textbf{NB:} The diagram above is just to help you visualise the solutions better, it is not required for you to draw for marks but it is always super helpful to visualise.
QUESTION 3

a.

1. \(\sin(53°) = \sin(31° + 22°) \)
 \[= \sin(31°) \cos(22°) + \cos(31°) \sin(22°) \]
 \[= k \]

2. \(\cos(143°) = \cos(90° + 53°) \)
 \[= -\sin(53°) \]
 \[= -k \]

3. \(\sin(75°) \sin(22°) + \cos(75°) \cos(22°) = \cos(75° - 22°) \)
 \[= \cos(53°) \]
 \[= \sqrt{1-k^2} \]
b. R.T.P: \(\frac{\cos \theta}{\sin 2\theta} - \frac{\cos 2\theta}{2 \sin \theta} = \sin \theta \)

Proof:

LHS = \(\frac{\cos \theta}{\sin 2\theta} - \frac{\cos 2\theta}{2 \sin \theta} \)

\[= \frac{\cos \theta}{2 \sin \theta \cos \theta} - \frac{\cos^2 \theta - \sin^2 \theta}{2 \sin \theta} \]

\[= \frac{1}{2 \sin \theta} - \frac{2 \sin \theta}{1 - (\cos^2 \theta - \sin^2 \theta)} \]

\[= \frac{2 \sin \theta}{1 - \cos^2 \theta + \sin^2 \theta} \]

\[= \frac{2 \sin \theta}{2 \sin^2 \theta} \]

\[= \frac{\sin \theta}{\sin \theta} \]

\[= \sin \theta \]

\[\therefore \text{LHS} = \text{RHS} \]

\[\blacksquare \]

c. \(3 \sin^2 \theta - 2 \sin \theta = 0 \)

\[\therefore \sin \theta (3 \sin \theta - 2) = 0 \]

\[\therefore \sin \theta = 0 \text{ or } 3 \sin \theta - 2 = 0 \]

\[\therefore \sin \theta = 0 \text{ or } \sin \theta = \frac{2}{3} \]

For \(\sin \theta = 0 \): \(\theta = 0^\circ + k.360^\circ, k \in \mathbb{Z} \) or \(\theta = 180^\circ + k.360^\circ, k \in \mathbb{Z} \)

For \(\sin \theta = \frac{2}{3} \): \(\theta = 41.8^\circ + k.360^\circ, k \in \mathbb{Z} \) or \(\theta = 138.2^\circ + k.360^\circ, k \in \mathbb{Z} \)

QUESTION 4

a. \(M(3; -1) \)

b. Since point C lies on the y-axis, we sub \(x = 0 \) into the circle equation:

\[\therefore (0 - 3)^2 + (y + 1)^2 = 25 \]

\[\therefore y^2 + 2y + 1 + 9 - 25 = 0 \]

\[\therefore y^2 + 2y - 15 = 0 \]

\[\therefore (y + 5)(y - 3) = 0 \]

\[\therefore y = -5 \text{ or } y = 3 \]

Now, point C lies above the x-axis, hence \(C(0; 3) \).
c. Firstly, we have $m_{CM} = \frac{y_C - y_M}{x_C - x_M} = \frac{3 - (-1)}{0 - 3} = -\frac{4}{3}$.

Therefore, $m_{AC} = \frac{1}{m_{CM}} = \frac{3}{4}$.

Hence $y = \frac{3}{4}x + c$. Sub the point $C(0; 3)$.

$\therefore y = \frac{3}{4}x + 3$

d. To determine the length of AB, we first need the co-ordinates of A and B.

For point A, we have: Sub $y = 0$ into $y = \frac{3}{4}x + 3$. Then:

$\frac{3}{4}x + 3 = 0$

$\therefore x = -4$

Hence we have $A(-4; 0)$.

Now, for point B, we have: Sub $y = 0$ into $(x - 3)^2 + (y + 1)^2 = 25$. Then:

$(x - 3)^2 + (0 + 1)^2 = 25$

$\therefore (x - 3)^2 = 24$

$\therefore x - 3 = \pm\sqrt{24}$

$\therefore x = 3 \pm \sqrt{24}$ (i.e. $x = 7,9$ or $x = -1,9$)

Now, from our diagram it follows that: $B(-1,9; 0)$.

Thus $\text{dist}(AB) = 4 - 1,9$

$\quad = 2,1$ units.
QUESTION 5

a. R.T.P: $\hat{CAE} = \hat{ABC}$

Construction: We draw diameter AOF and chord FC.

![Diagram of circle with points A, B, C, D, E, and O, showing the construction of diameter AOF and chord FC.]

Proof:

We have:

- $OAC + \hat{CAE} = 90^\circ$ (Tangent is ⊥ to line through centre)
- $\hat{FCA} = 90^\circ$ (Angles in a semi-circle)
- $OFC + OAC = 90^\circ$ (Angles in $\triangle AFC$)

Therefore

- $OFC = \hat{CAE}$ (Since $OFC + OAC = \hat{CAE} + OAC$)

However

- $OFC = \hat{ABC}$ (Angles in the same segment AC)

Hence

$\hat{CAE} = \hat{ABC}$ ■
In Euclidean Geometry, it is always super helpful to re-draw any given diagrams and fill in as much information you can that is given to you in the question.

Now, we have:

\[
\begin{align*}
\hat{B}_3 &= 70^\circ & \text{(Angles in the same segment } FD) \\
\hat{F}_2 &= 52^\circ & \text{(Angles in the same segment } FD) \\
\hat{B}_3 &= \hat{G}_1 + \hat{G}_2 & \text{(Ext. angle of a cyclic quad } GABF = \text{Int. opp. angle)} \\
\therefore \hat{G}_1 + \hat{G}_2 &= 70^\circ \\
\therefore \hat{\frac{1}{2}} &= \hat{G}_2 = 52^\circ & \text{(tan-chord theorem)} \\
\text{Hence } \hat{G}_1 &= 70^\circ - \hat{G}_2 = 18^\circ
\end{align*}
\]
QUESTION 6

a. \(A = 50 \)

b. 400 (see your ogive curve)

c. \(P = 50 \) and \(M = 100 \) (read off your ogive to see this)

d. We have \(300 \leq Q_3 \leq 325 \) (approx.) and \(Q_1 = 200 \). Then IQR \(\approx 110 \)

e. \(\bar{x} = 250 \)

f.

1. This would not affect the median as it’s only the upper 25% of data that would be affected.

2. The difference between the mean and the data would decrease, hence the standard deviation would also decrease (since they depend on each other)

3. This would skew the data to the left since we would have mean < median.
SECTION B

QUESTION 7

a. Firstly we have that \(m_{OA} = \frac{y_0-y_A}{x_0-x_A} \)
 \[= \frac{0-6}{0-2} = 3 \]

Now, the equation of line \(OA \) is given by: \(y = 3x + c \). Sub point \((0; 0)\).
Therefore \(y = 3x \). The equation of line \(EF \) is given by: \(2y + x = 10 \), i.e.,
\(y = -\frac{1}{2}x + 5 \). Now, point \(B \) is a point of intersection, thus:
\[-\frac{1}{2}x + 5 = 3x \]
\[\therefore \frac{7}{2}x = 5 \]
\[\therefore x = \frac{10}{7} \]. Hence point \(B \left(\frac{10}{7}; \frac{30}{7} \right) \).

Now, to calculate the area of \(\Delta EBO \), we need the base and height. We can see from
our diagram that the height of \(\Delta EBO \) is \(\frac{10}{7} \) and the base is the length of line \(OE \).
Hence, to get point \(E \), sub \(x = 0 \) into \(2y + x = 10 \). Hence \(y = 5 \). So \(E(0; 5) \).
Thus:
\[\text{Area of } \Delta EBO = \frac{1}{2} \times 5 \times \frac{10}{7} \]
\[= \frac{25}{7} \text{ units}^2 \]
b. We are given that $D \left(\frac{x; 18}{5} \right)$. Hence:

Area of $\triangle DCF = \frac{1}{2} \times CF \times \perp \text{height}$.

Note: The perpendicular height is $\frac{18}{5}$. Thus we have:

Area of $\triangle DCF = \frac{1}{2} \times 6 \times \frac{18}{5}$

$= \frac{54}{5}$ units2

(See diagram on pg. 11)
QUESTION 8

a.

1. The length of OC is given by:
 \[\text{dist}(OC) = \sqrt{(x_O - x_C)^2 + (y_O - y_C)^2} \]
 \[= \sqrt{(0 - 3)^2 + (-2 - 1)^2} \]
 \[= \sqrt{18} = 3\sqrt{2} \]

2. Note that if point B moves along the circle to be parallel to the x-axis, then we will have chord CB which is bisected by the line from the centre O, hence we get \(B(6; -2) \)

3. Firstly note that
 \[m_{OC} = \frac{y_O - y_C}{x_O - x_C} \]
 \[= \frac{1 - (-2)}{3 - 0} \]
 \[= \frac{3}{3} \]
 \[= 1 \]

 \[\therefore OC \hat{B} = 45^\circ \] (since line \(CB \parallel x\)-axis)

 \[\therefore COB = 90^\circ \] (Angles in \(\Delta OCB \))

 \[\therefore CAB = 45^\circ \] (Angle at centre = 2x Angle at circum.)
b. We are given that point B moves \textbf{anti-clockwise} along the circle until the area of ΔOBC is $\frac{9}{2}$ units2. We note the following:

The circumference of the circle is given by: $2\pi r = 2\pi \sqrt{18}$ units.
(Note: $r = \text{dist}(OC)$.
We were also given that: $C\hat{A}B = 30^\circ$
$\therefore C\hat{O}B = 60^\circ$ (Angle at centre = 2x Angle at circum.)

Now, we calculate the angle θ after B moves to the new position B'.
From the sine area rule, we get:

Area of $\Delta O\hat{B'}C = \frac{1}{2} \times OC \times OB' \times \sin \theta = \frac{9}{2}$
$\therefore \frac{1}{2} \times \sqrt{18} \times \sqrt{18} \times \sin \theta = \frac{9}{2}$
$\therefore \sin \theta = \frac{1}{2}$
$\therefore \text{Key angle} = 30^\circ$

However, we have an obtuse triangle, hence $\theta = 180^\circ - 30^\circ = 150^\circ$.
Hence B needs to move $150^\circ - 60^\circ = 90^\circ$ anti-clockwise.

Lastly, to calculate the \textbf{shortest distance} required for this area is given by:

$$2\pi r \times \left(\frac{\text{angle you are moving}}{360^\circ}\right) = 2\pi \sqrt{18} \times \frac{90^\circ}{360^\circ} \text{units.}$$
QUESTION 9

a. R.T.P: \(\triangle ADC \parallel \parallel \triangle DBC \)

 Proof:

 Firstly, we have that \(\hat{C} \) is a common angle

 Next, \(\hat{D}_2 = \hat{A} \) (tan-chord theorem)

 Lastly, \(\hat{B}_2 = A\hat{D}C \) (Angles in a \(\triangle \)).

 Hence we have that \(\triangle ADC \parallel \parallel \triangle DBC \) (A.A.A) \(\blacksquare \)

b. R.T.P: \(AB \cdot BC = DC^2 - BC^2 \)

 Proof:

 Firstly, we have that \(\frac{DC}{BC} = \frac{AC}{DC} \) (since \(\triangle ADC \parallel \parallel \triangle DBC \))

 Therefore we get: \(DC^2 = AC \cdot BC \) ...Eq(1)

 However, we note that: \(AC = AB + BC \)

 Substituting this into Eq(1) yields:

 \[
 DC^2 = (AB + BC) \cdot BC
 \]

 \[
 \therefore DC^2 = AB \cdot BC + BC^2
 \]

 \[
 \therefore AB \cdot BC = DC^2 - BC^2 \quad \blacksquare
 \]
QUESTION 10

a. R.T.P: \(DL \parallel CB \)
 Proof:
 Firstly, we have that: \(A\overline{DL} = 90^\circ \) (Angles in a semi-circle)
 \(A\overline{CB} = 90^\circ \) (Angles in a semi-circle)
 Therefore \(DL \parallel CB \) (via corresponding angles)

b. R.T.P: \(2SD = LC \)
 Proof:
 Firstly, we have that: \(LC = LA \) (radii of the larger circle)
 \(SD = SL = SA \) (radii of the smaller circle)
 However, we that: \(LA = SA + SL \)
 Therefore, we get: \(LC = LA \)
 \(= SA + SL \)
 \(= SD + SD \)
 \(= 2SD \) ■

c. We know that \(AS = SL \) and \(AL = LB \) (radii) and \(AB = 2AL \) and \(AL = 2SL \).
 Hence we get: \(\frac{SL}{AB} = \frac{SL}{4SL} = \frac{1}{4} \)

d. We are given that \(AB = 30 \) units and \(\frac{BN}{NC} = \frac{7}{9} \). We use the proportionality theorem:

 Note that \(LB = 15 \) units (since \(LB = \frac{1}{2} AB \)).
 Let \(BN = 7k \) and \(NC = 9k \) for some positive integer \(k \) \((since \frac{BN}{NC} = \frac{7}{9}) \).
 Then, we have:
 \[
 \frac{LM}{LB} = \frac{NC}{BC} = \frac{9k}{9k} = 1
 \]
 \[
 \therefore \frac{LM}{15} = \frac{9k}{16k} \quad (Note: BC = BN + NC)
 \]
 \[
 \therefore LM = \frac{9}{16} \times 15 = 8.44 \text{ units}
 \]
QUESTION 11

a.

1. The length of BE is the length of the diameter – length of ED.
 Also, OA is a radius of the circle. Hence $BE = 2OA - ED$

2. R.T.P: $(2AO - ED)^2 = BC^2 - AE^2$

 Proof:

 We have that: $AE = EC$ (line from centre is \perp to chord theorem)

 $BE^2 + EC^2 = BC^2$ (Pythagoras)

 $\therefore BE^2 = BC^2 - EC^2$

 $= BC^2 - AE^2$ (since $AE = EC$)

 $\therefore (2AO - ED)^2 = BC^2 - AE^2$ (From part a. 1. $BE = 2OA - ED$)
b. R.T.P: \(B\hat{C}D = 90^\circ + \frac{\theta}{2} \)

Proof:

We make the following construction: Draw chord DB

Now, we have: \(D\hat{B}E = B\hat{D}E \) (Tangents drawn from a common point)

Then, \(D\hat{B}E + B\hat{D}E + B\hat{E}D = 180^\circ \) (Angles in a \(\Delta \))

\[
\therefore 2D\hat{B}E + \theta = 180^\circ \text{ (since } D\hat{B}E = B\hat{D}E) \\
\therefore D\hat{B}E = \frac{180^\circ - \theta}{2} = B\hat{D}E
\]

Also, we have:

\[
\hat{A} = B\hat{D}E = \frac{180^\circ - \theta}{2} \text{ (tan-chord theorem)} \\
\hat{A} + \hat{C} = 180^\circ \text{ (Opp. angles of a cyclic quad are supp.)} \\
\therefore \hat{C} = 180^\circ - \hat{A} \\
= 180^\circ - \frac{180^\circ - \theta}{2} \\
= \frac{360^\circ - 180^\circ + \theta}{2} \\
= \frac{180^\circ + \theta}{2} \\
= 90^\circ + \frac{\theta}{2} \]

\(\blacksquare \)
QUESTION 12

a. R.T.P: $BT = 3\sqrt{3} + 6$

Proof:

To calculate the length of BT, we see that: $BT = 3 + h + 3 = 6 + h$.

To solve for h, we use Pythagoras’ theorem:

$$h^2 + 3^2 = 6^2$$

$$\therefore \ h = \sqrt{36 - 9}$$

$$\hspace{1cm} = \sqrt{27}$$

$$\hspace{1cm} = 3\sqrt{3}$$

Hence: $BT = 3\sqrt{3} + 6$ \blacksquare
b.

1. If we looked at this diagram from the front view, we would get the diagram in Q12 a. This will help us in determining the length of \(AB \). From the side view we can see that we get a right-angled triangle \(\Delta BTA \) with height \(BT = 3\sqrt{3} + 6 \) and we are given that \(B\hat{A}T = 50^\circ \). Hence:

\[
\sin 50^\circ = \frac{BT}{AB} \\
\therefore AB = (3\sqrt{3} + 6)(\sin 50^\circ) = 14.62 \text{ metres}
\]

2. We are given that \(EB = 13 \) metres long. Then, if we view \(\Delta BEA \) from the front:
Now, using the sine rule we get:

\[
\frac{\sin A}{13} = \frac{\sin 70^\circ}{14,62}
\]

\[\therefore \hat{A} = 56.68^\circ \text{ and so } \hat{B} = 180^\circ - (70^\circ + 56.68^\circ) = 53.32^\circ\]

Hence, to get EA, we use the cosine rule:

\[
EA^2 = EB^2 + AB^2 - 2 \times EB \times AB \times \cos \hat{B}
\]

\[
= 13^2 + 14,62^2 - 2(13)(14,62) \cos 53.32^\circ
\]

\[\therefore EA = \sqrt{155,6815} = 12.48 \text{ metres.}\]