## Answers to:

## Mathematics IEB 2016 Paper 2

AdvantageLearn.com

## Disclaimer:

These answers are developed by Advantage Learn as example solutions to the IEB (Independent Examinations Board) exam papers.

These answers can be freely downloaded, shared and printed for students to use to help them in preparing for their examinations. Advantage Learn does not produce the exam papers which are copyright of the IEB.

The IEB past exam papers are available freely on the internet. If you have any queries about the paper then please contact the IEB directly.

If you are looking for any of the question papers then you can find them on our website, https://advantagelearn.com.

## QUESTION 1

a. We are given $O \hat{A} B=135^{\circ}$ and $O \hat{C} B=90^{\circ}$, so $O \hat{A} B+O \hat{C} B=225^{\circ}$. Hence opp. angles do not add up to $180^{\circ}$.
b. Using tan-gradient, we have $m_{A B}=\tan 45^{\circ}=1$. Since $O A=8$ units, then $A(0 ; 8)$. Substitute point $A$ into $y=m x+c$, then $y=x+8$.
c.

1. Since $O C=6$ units, then $C(6 ; 0)$. Hence $x=6$ is the equation of $B C$.
2. $O C B A$ is a parallelogram with base lengths of $O A$ and $B C$. The perpendicular height is given by $O C$. Note $B(6 ; 14)$, hence:
Area $=\frac{1}{2}(O A+B C)(O C)=\frac{1}{2}(8+14)(6)=66$ units $^{2}$

## QUESTION 2

a.

1. $M=\frac{2 \sin ^{2} \theta+2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
$\therefore M=\frac{2 \sin \theta(\sin \theta+\cos \theta)}{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}$
$\therefore M=\frac{2 \sin \theta}{(\cos \theta-\sin \theta)}$
$\therefore M=P$
2. $P$ is undefined when: $\cos \theta-\sin \theta=0$

$$
\begin{aligned}
\therefore \cos \theta & =\sin \theta \\
\therefore 1 & =\tan \theta
\end{aligned}
$$

$\therefore$ Reference angle $=45^{\circ}$
$\therefore \theta=-135^{\circ}$ or $45^{\circ}$ or $225^{\circ}$
b.

1. Quadrant 2

$\therefore \tan \beta=\frac{y}{x}=\frac{\sqrt{2}}{-3}$
C.
2. $\cos \left(\alpha-30^{\circ}\right)-\cos \left(\alpha+30^{\circ}\right)$
$=\cos \alpha \cos 30^{\circ}+\sin \alpha \sin 30^{\circ}-\left(\cos \alpha \cos 30^{\circ}-\sin \alpha \sin 30^{\circ}\right)$
$=\cos \alpha \cos 30^{\circ}+\sin \alpha \sin 30^{\circ}-\cos \alpha \cos 30^{\circ}+\sin \alpha \sin 30^{\circ}$
$=2 \sin \alpha \sin 30^{\circ}=2 \sin \alpha \times\left(\frac{1}{2}\right)$
$=\sin \alpha$
3. $\sin \alpha=2 \sin ^{2} \alpha$

$$
\therefore 0=\sin \alpha(2 \sin \alpha-1)
$$

$$
\begin{array}{rlr}
\therefore \sin \alpha=0 & \text { or } & \sin \alpha=\frac{1}{2} \\
\therefore \alpha=0^{\circ}+k \cdot 180^{\circ}, k \in \mathbb{Z} & \therefore \alpha=30^{\circ}+k .360^{\circ}, k \in \mathbb{Z} \\
& \text { or } \alpha=150^{\circ}+k .360^{\circ}, k \in \mathbb{Z}
\end{array}
$$

## QUESTION 3

a. We have: Radius of circle $Q$ is $9-5=4$ units. Now, $x_{Q}$ of the centre of circle Q is $9+5=14$ units, $y_{Q}$ of the centre of circle Q is 5 units.
Hence the equation of circle Q is given by: $(x-14)^{2}+(y-5)^{2}=16$
b. We are given: $(x-p)^{2}+y^{2}-22 y=-117$. We complete the square on the LHS:

$$
\begin{gathered}
\therefore(x-p)^{2}+y^{2}-22 y+121=-117+121 \\
\therefore(x-p)^{2}+(y-11)^{2}=4
\end{gathered}
$$

Hence the length of RQ is $4+2=6$ units.
c. To get the length of $A B$, we first calculate:

Length of: $\quad P R^{2}=P Q^{2}+Q R^{2}$

$$
\begin{aligned}
& \therefore P R=\sqrt{(14-5)^{2}+(11-5)^{2}} \\
& \therefore P R=\sqrt{117}
\end{aligned}
$$

Length of: $\quad P A=5$
Length of: $\quad B R=2$
Therefore the length of line $A B=P R-P A-B R$

$$
\begin{aligned}
& =\sqrt{117}-5-2 \\
& =3,82 \text { units }
\end{aligned}
$$

## QUESTION 4

a. Draw $A O$ and $O C$. Then,
R.T.P: $\widehat{B}+\widehat{D}=180^{\circ}$

Proof:
$\widehat{O}_{2}=2 \times \hat{B} \quad$ (Angle at centre)
$\widehat{O}_{1}=2 \times \widehat{D} \quad$ (Angle at centre)
$\widehat{O}_{1}+\widehat{O}_{2}=360^{\circ}$ (Angle around a pt.)
$\therefore 2 \widehat{D}+2 \widehat{B}=360^{\circ}$
$\therefore \widehat{B}+\widehat{D}=180^{\circ}$.

b. We have: $A \hat{B} C=62^{\circ} \quad$ (tan-chord thm.)

$$
\begin{aligned}
& A \hat{O} C=124^{\circ} \quad \text { (Angle at centre }=2 \times \text { Angle at circum.) } \\
& \hat{C}_{2}=\hat{A}_{3}=28^{\circ} \quad(O C=O A, \text { radii are equal) } \\
& \hat{A}_{2}=25^{\circ} \quad(\text { Given }) \\
& \left.\therefore \hat{C}_{1}=180^{\circ}-\left(\hat{A}_{2}+\hat{A}_{3}+\hat{B}+\hat{C}_{2}\right) \quad \text { (Angles in a } \Delta\right) \\
& \therefore \hat{C}_{1}=180^{\circ}-\left(25^{\circ}+28^{\circ}+62^{\circ}+28^{\circ}\right) \\
& \quad=37^{\circ}
\end{aligned}
$$

c.

1. We can conclude that $N=Q$.
2. Proof: $\widehat{D}_{1}=\widehat{B} \quad$ (ext. angle of a cyclic quad)
$\widehat{D}_{1}=\hat{A}_{1}+\hat{C}_{2}$ (ext. angle of $\Delta=$ sum of two int. opp. angles)
$\therefore \hat{B}=\hat{A}_{1}+\hat{C}_{2}$.

## QUESTION 5

a. Sub. $x=360^{\circ}$ into $y=3 \sin x+1$ :
$\therefore y=3 \sin 360^{\circ}+1$
$\therefore y=1$
$\therefore B\left(360^{\circ} ; 1\right)$
b. $3 \sin x+1=-1$
$\therefore 3 \sin x=-2$
$\therefore \sin x=-\frac{2}{3}$
Key angle $=41,81^{\circ}$

Hence $x=221,81^{\circ}$ or $x=318,19^{\circ}$.
c. From the graph, we can see that any straight line $g(x)=k$ will cut through $f(x)$ in the interval $\left[0^{\circ} ; 180^{\circ}\right.$ ] in between the values of $1 \leq k \leq 4$. Hence there will be no solutions when $k>4$ or $k<1$.

## QUESTION 6

a. Using you calculator, we get: $r=0.9755$, therefore a very strong relationship.
b. Remember that: $y=a+b x$, where: $A=2788,26$ and $B=1658,39$. Hence $y=2788,26+1658,39 x$.
c. $y=\mathrm{R} 34297,67$.

Hence the managers projected income based on the line of best fit is R 34297,67 and the actual sales was R 23000 . So this would not be considered a successful day.

NB: It is important that you are familiar with using your calculator for statistics questions such as regression modelling, finding means/variances, etc. We have attached a step-bystep instruction guide on how to use your Casio calculator to compute these statistical operations.

## How to use a Casio calculator for Regression

 modellingPress:
MODE $\rightarrow 3:$ STAT $\rightarrow 2: \mathrm{A}+\mathrm{Bx}$
Enter data into the $x$ and $y$ columns
Press: AC
To find A:
SHIFT $\rightarrow 1 \rightarrow$ 5:Reg $\rightarrow$ 1:A $\rightarrow=$
To find B :
SHIFT $\rightarrow 1 \rightarrow$ 5:Reg $\rightarrow$ 2:B $\rightarrow=$
To find $r$ (correlation coefficient)
SHIFT $\rightarrow 1 \rightarrow$ 5:Reg $\rightarrow$ 3:r $\rightarrow=$
To find $\hat{y}$ given $\hat{x}$ :
Enter $\hat{x}$ - value $\rightarrow$ SHIFT $\rightarrow 1 \rightarrow 5: \operatorname{Reg} \rightarrow 5: \hat{y} \rightarrow=$
To find the mean point $(\bar{x} ; \bar{y})$
SHIFT $\rightarrow 1 \rightarrow 4:$ Var $\rightarrow 2: \bar{x} \rightarrow=$
SHIFT $\rightarrow 1 \rightarrow 4: V a r \rightarrow 5: \bar{y} \rightarrow=$

## How to use a Casio calculator to find Mean and Standard Deviation

Press:
MODE $\rightarrow$ 3:STAT $\rightarrow$ 1: 1 - VAR
Enter data into the $x$ and FREQ columns

If no FREQ column then PRESS:
SHIFT $\rightarrow$ SET UP $\rightarrow$ page down $\rightarrow 4$ : STAT $\rightarrow$ 1: ON

Press: AC: $\rightarrow$
To find the mean:
SHIFT $\rightarrow 1 \rightarrow 4$ : Var $\rightarrow 2: \bar{x}$

To find the standard deviation:
SHIFT $\rightarrow 1 \rightarrow 4: \operatorname{Var} \rightarrow 3: \sigma x$
Remember: variance $=(\sigma x)^{2}$

## SECTION B

## QUESTION 7

a. $A=250$ and $B=502$
b.

1. $\bar{x} \approx 47,14$ (Use calculator)
2. $65<x \leq 75$
c.

d.
3. No, the data is skewed to the left since the mean is less than the median.
4. No, the mean is not a good indicator since it's affected by the extremes. The median will be a better measure.

## QUESTION 8

a. We are given $T P=3$, then $T R=T P$ (radii are equal) and so $T R=3$.

Also, we have $T P \perp O P(O P$ is a tangent to circle $T)$. Hence we have that:
$O P^{2}=O T^{2}-T P^{2}$
$\therefore O P=4$
$\therefore O R=O P=4$ (tangents drawn from the same point $O$ )
$\therefore x_{T}=4$
$\therefore T(4 ; 3)$.
b. We have: $\tan T \hat{O} R=\frac{3}{4}$

$$
\therefore T \widehat{O} R=36,87^{\circ}
$$

c. From the diagram, we have:
$P \widehat{O} R=2 \times 36,87^{\circ}$
$=71,74^{\circ}$ (properties of kite OPTR)
$\therefore \sin P \hat{O} R=\frac{y_{p}}{4}$
$\therefore y_{p}=4 \sin 71,74^{\circ}$

$$
=3,84 \text { units. }
$$



## QUESTION 9

a. We have: $O C^{2}=O B^{2}+B C^{2}$

$$
\begin{aligned}
\therefore O C^{2} & =20+80 \\
\therefore O C & =\sqrt{100}=10 \text { units. }
\end{aligned}
$$

b. From our diagram, we have:

$$
\begin{aligned}
\tan O \hat{C} B & =\frac{\sqrt{20}}{\sqrt{80}}=\frac{1}{2} \\
\therefore m_{A C} & =\tan \left(180^{\circ}-O \hat{C} B\right) \\
\therefore m_{A C} & =-\tan O \hat{C} B \\
\therefore m_{A C} & =-\frac{1}{2}
\end{aligned}
$$

C.


From part b. we know that $m_{A C}=-\frac{1}{2}$. Then, $m_{O B}=-\frac{1}{m_{A C}}=2($ since $O B \perp A C)$.
Then, in our diagram, we have that $B(k ; 2 k)$. Now, using Pythag on $\triangle \mathrm{OMB}$, we have:

$$
\begin{aligned}
& O M^{2}+B M^{2}=O B^{2} \\
& \therefore k^{2}+(2 k)^{2}=(\sqrt{20})^{2} \\
& \therefore 5 k^{2}=20 \\
& \therefore k=2 \\
& \therefore B(2 ; 4) .
\end{aligned}
$$

d. Proof:

$$
\text { Let } \begin{aligned}
C \hat{O} B & =\theta . \\
\therefore A \hat{O} B & =90^{\circ}-\theta \\
\therefore O \hat{A} B & =90^{\circ}-A \hat{O} B \\
& =90^{\circ}-\left(90^{\circ}-\theta\right) \\
& =\theta
\end{aligned}
$$

$$
\therefore O \hat{A} B=C \hat{O} B
$$

$$
\therefore \triangle A B O \mid \| \triangle O B C(\mathrm{AAA})
$$

$$
\therefore \frac{A B}{O B}=\frac{B O}{B C}
$$

$$
\therefore A B=\frac{O B^{2}}{B C}
$$

## QUESTION 10

a. Let $A B=4 k$ and $B C=7 k$. Then $A C=A B+B C=11 k$.
$\therefore \frac{F E}{F C}=\frac{A B}{A C}=\frac{4}{11}$. (By the Proportionality theorem)
b. Let $A G=9 \mathrm{~m}$ and $A F=17 \mathrm{~m}$. Then $G F=A F-A G=8 m$.
$\therefore \frac{C D}{D F}=\frac{A G}{G F}=\frac{9}{8}$. (By the Proportionality theorem)
c.


Let $F E=4 p$ and $E C=7 p$. By part b. we also have $F D=8 m$ and $D C=9 m$.
We are given that $F C=374$. Hence we have:
$F C=F E+E C=11 p=374$. Then $p=34$. Similarly, we have
$F C=F D+D C=17 m=374$. Then $m=22$.
Hence $E D=374-F E-D C=374-4 p-9 m=40 \mathrm{~km}$.
Therefore it will take $40 \times 50=2000$ hours to build the section from E to D.

## QUESTION 11

a. Proof:

We have $\quad \hat{C}_{2}=\widehat{D} \quad$ (angles in the same segment $F E$ )

$$
\hat{C}_{1}+\hat{C}_{2}=90^{\circ} \text { (angle in a semi-circle) }
$$

$$
\therefore \hat{C}_{1}+\widehat{D}=90^{\circ}\left(\text { since } \hat{C}_{2}=\widehat{D}\right)
$$

b. We are given that $\widehat{D}=38^{\circ}$. Let us make the following construction:

Construct chord BF.


Then, we have: $\hat{C}_{1}=90^{\circ}-\hat{C}_{2}$

$$
=90^{\circ}-38^{\circ}\left(\text { since } \hat{C}_{2}=\widehat{D}\right)
$$

$$
=52^{\circ}
$$

Now, $A \widehat{F} B=\hat{C}_{1}=52^{\circ}$ (By the tan-chord thm.)

$$
\begin{aligned}
& A \hat{B F}=52^{\circ}(\text { By the tan-chord thm.) } \\
& \begin{aligned}
\therefore B \hat{A} F & =180^{\circ}-(A \hat{B} F+A \hat{F} B) \\
& =180^{\circ}-\left(52^{\circ}+52^{\circ}\right) \\
& \left.=76^{\circ} \text { (angles in a } \Delta\right)
\end{aligned}
\end{aligned}
$$

## QUESTION 12

a. We have: Area of $\triangle A D C=\frac{1}{2} \times A D \times D C \times \sin A \widehat{D} C$

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 6 \times \sin 130^{\circ} \\
& =13,8 \text { units }^{2}
\end{aligned}
$$

b. Proof:

Since DABC is a cyclic quad (see diagram), we have:

$$
\begin{aligned}
A \widehat{B} C+A \widehat{D} C & =180^{\circ} \\
\therefore A \widehat{B} C & =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

Now, $A \hat{B} D=D \hat{B} C(A D=D C, \therefore$ equal chords subtend equal angles)
Hence $D \hat{B} C=\frac{1}{2}\left(50^{\circ}\right)=25^{\circ}$.
c. Firstly, we have that: $B C=6+6=12$ units (line from the centre bisects chord)

Now, using the sine rule:

$$
\begin{aligned}
\frac{\sin B \widehat{D} C}{12} & =\frac{\sin 25^{\circ}}{6} \\
\therefore \sin B \widehat{D} C & =2 \sin 25^{\circ} \\
\therefore \sin B \widehat{D} C & =0.845 \ldots \\
\therefore \text { Key angle } & =57,7^{\circ} \\
\therefore B \widehat{D} C & =180^{\circ}-57,7^{\circ} \\
& =122,3^{\circ} \\
\therefore \theta & \left.=180^{\circ}-\left(25^{\circ}+122,3^{\circ}\right) \quad \text { (Angles in } \triangle D B C\right) \\
\therefore \theta & =32,7^{\circ}
\end{aligned}
$$

d. When we lift point $B$ vertically 9 units above point $A$, we get the following triangle:


We want to find angle $T \hat{C} A$. Using the cosine rule on $\triangle A D C$, we get:
$A C^{2}=6^{2}+6^{2}-2(6)(6) \cos 130^{\circ}$
$\therefore A C^{2}=118,28 \ldots$
$\therefore A C=10,875 \ldots$
$\therefore \tan T \hat{C} A=\frac{T A}{A C}$
$\therefore \tan T \hat{C} A=\frac{9}{10,875 \ldots}$
$\therefore T \hat{C} A=39,6^{\circ}$.

