Answers to:

Mathematics
IEB 2016 Paper 2
Disclaimer:
These answers are developed by Advantage Learn as example solutions to the IEB (Independent Examinations Board) exam papers.

These answers can be freely downloaded, shared and printed for students to use to help them in preparing for their examinations. Advantage Learn does not produce the exam papers which are copyright of the IEB.

The IEB past exam papers are available freely on the internet. If you have any queries about the paper then please contact the IEB directly.

If you are looking for any of the question papers then you can find them on our website, https://advantagelearn.com.
SECTION A

QUESTION 1

a. We are given $\angle OAB = 135^\circ$ and $\angle OCB = 90^\circ$, so $\angle OAB + \angle OCB = 225^\circ$.
 Hence opp. angles do not add up to 180°.

b. Using tan-gradient, we have $m_{AB} = \tan 45^\circ = 1$. Since $OA = 8$ units, then $A(0; 8)$.
 Substitute point A into $y = mx + c$, then $y = x + 8$.

c. 1. Since $OC = 6$ units, then $C(6; 0)$. Hence $x = 6$ is the equation of BC.

2. $OCBA$ is a parallelogram with base lengths of OA and BC. The perpendicular height is given by OC. Note $B(6; 14)$, hence:
 Area $= \frac{1}{2} (OA + BC)(OC) = \frac{1}{2} (8 + 14)(6) = 66 \text{ units}^2$

QUESTION 2

a. 1. $M = \frac{2 \sin^2 \theta + 2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$
 $\therefore M = \frac{2 \sin \theta \cos \theta}{2 \sin \theta (\sin \theta + \cos \theta)}$
 $\therefore M = \frac{\sin \theta}{\cos \theta - \sin \theta}$
 $\therefore M = P$

2. P is undefined when: $\cos \theta - \sin \theta = 0$
 $\therefore \cos \theta = \sin \theta$
 $\therefore 1 = \tan \theta$
 \therefore Reference angle $= 45^\circ$
 $\therefore \theta = -135^\circ \text{ or } 45^\circ \text{ or } 225^\circ$

b. 1. Quadrant 2
2. \[
\tan \beta = \frac{y}{x} = \frac{\sqrt{11}}{-3}
\]
c. 1. \[
cos(\alpha - 30^\circ) - \cos(\alpha + 30^\circ)
= \cos \alpha \cos 30^\circ + \sin \alpha \sin 30^\circ - (\cos \alpha \cos 30^\circ - \sin \alpha \sin 30^\circ)
= \cos \alpha \cos 30^\circ + \sin \alpha \sin 30^\circ - \cos \alpha \cos 30^\circ + \sin \alpha \sin 30^\circ
= 2 \sin \alpha \sin 30^\circ = 2 \sin \alpha \times \left(\frac{1}{2}\right)
= \sin \alpha
\]
2. \[
\sin \alpha = 2 \sin^2 \alpha
\]
\[
0 = \sin \alpha (2 \sin \alpha - 1)
\]
\[
\sin \alpha = 0 \quad \text{or} \quad \sin \alpha = \frac{1}{2}
\]
\[
\alpha = 0^\circ + k \cdot 180^\circ, k \in \mathbb{Z} \quad \text{or} \quad \alpha = 30^\circ + k \cdot 360^\circ, k \in \mathbb{Z}
\]
\[
\alpha = 150^\circ + k \cdot 360^\circ, k \in \mathbb{Z}
\]

QUESTION 3

a. We have: Radius of circle Q is 9 - 5 = 4 units. Now,
\[
x_Q \text{ of the centre of circle Q is } 9 + 5 = 14 \text{ units,}
\]
\[
y_Q \text{ of the centre of circle Q is } 5 \text{ units.}
\]
Hence the equation of circle Q is given by: \((x - 14)^2 + (y - 5)^2 = 16 \)

b. We are given: \((x - p)^2 + y^2 - 22y = -117 \). We complete the square on the LHS:
\[
\therefore (x - p)^2 + y^2 - 22y + 121 = -117 + 121
\]
\[
\therefore (x - p)^2 + (y - 11)^2 = 4
\]
Hence the length of RQ is 4 + 2 = 6 units.
c. To get the length of AB, we first calculate:

Length of: \(PR^2 = PQ^2 + QR^2 \)

\[\therefore PR = \sqrt{(14 - 5)^2 + (11 - 5)^2} \]

\[\therefore PR = \sqrt{117} \]

Length of: \(PA = 5 \)
Length of: \(BR = 2 \)
Therefore the length of line \(AB = PR - PA - BR \)
\[= \sqrt{117} - 5 - 2 \]
\[= 3.82 \text{ units} \]

QUESTION 4

a. Draw \(AO \) and \(OC \). Then,

\[\text{R.T.P: } \hat{B} + \hat{D} = 180^\circ \]

Proof:

\[\hat{O}_2 = 2 \times \hat{B} \] (Angle at centre)
\[\hat{O}_1 = 2 \times \hat{D} \] (Angle at centre)
\[\hat{O}_1 + \hat{O}_2 = 360^\circ \] (Angle around a pt.)

\[\therefore 2\hat{D} + 2\hat{B} = 360^\circ \]
\[\therefore \hat{B} + \hat{D} = 180^\circ . \]

b. We have: \(\hat{ABC} = 62^\circ \) (tan-chord thm.)
\[\hat{AOC} = 124^\circ \] (Angle at centre = 2\times Angle at circum.)
\[\hat{C}_2 = \hat{A}_3 = 28^\circ \] (\(OC = OA \), radii are equal)
\[\hat{A}_2 = 25^\circ \] (Given)

\[\therefore \hat{C}_1 = 180^\circ - (\hat{A}_2 + \hat{A}_3 + \hat{B} + \hat{C}_2) \] (Angles in a \(\Delta \))
\[\therefore \hat{C}_1 = 180^\circ - (25^\circ + 28^\circ + 62^\circ + 28^\circ) \]
\[= 37^\circ \]

c.

1. We can conclude that \(N = Q \).

2. Proof: \(\hat{D}_1 = \hat{B} \) (ext. angle of a cyclic quad)
\[\hat{D}_1 = \hat{A}_1 + \hat{C}_2 \] (ext. angle of \(\Delta = \) sum of two int. opp. angles)
\[\therefore \hat{B} = \hat{A}_1 + \hat{C}_2. \]
QUESTION 5

a. Sub. \(x = 360^\circ \) into \(y = 3 \sin x + 1 \):
\[
\therefore y = 3 \sin 360^\circ + 1 \\
\therefore y = 1 \\
\therefore B(360^\circ; 1)
\]

b. \(3 \sin x + 1 = -1 \)
\[
\therefore 3 \sin x = -2 \\
\therefore \sin x = -\frac{2}{3} \\
\text{Key angle} = 41.81^\circ
\]

Hence \(x = 221.81^\circ \) or \(x = 318.19^\circ \).

c. From the graph, we can see that any straight line \(g(x) = k \) will cut through \(f(x) \) in the interval \([0^\circ; 180^\circ]\) in between the values of \(1 \leq k \leq 4 \). Hence there will be no solutions when \(k > 4 \) or \(k < 1 \).

QUESTION 6

a. Using you calculator, we get: \(r = 0.9755 \), therefore a very strong relationship.

b. Remember that: \(y = a + bx \), where: \(A = 2788.26 \) and \(B = 1658.39 \). Hence
\[
y = 2788.26 + 1658.39x
\]

c. \(y = R \, 34297.67 \).

Hence the managers projected income based on the line of best fit is \(R \, 34297.67 \) and the actual sales was \(R \, 23000 \). So this would not be considered a successful day.

NB: It is important that you are familiar with using your calculator for statistics questions such as regression modelling, finding means/variances, etc. We have attached a step-by-step instruction guide on how to use your Casio calculator to compute these statistical operations.
How to use a Casio calculator for Regression modelling
Press:
MODE → 3:STAT → 2: A + Bx
Enter data into the x and y columns
Press: AC
To find A:
SHIFT → 1 → 5:Reg → 1:A → =
To find B:
SHIFT → 1 → 5:Reg → 2:B → =
To find r (correlation coefficient)
SHIFT → 1 → 5:Reg → 3:r → =
To find ŷ given ŷ:
Enter ŷ - value → SHIFT → 1 → 5:Reg → 5: ŷ → =
To find the mean point (x̅; y̅)
SHIFT → 1 → 4:Var → 2: x̅ → =
SHIFT → 1 → 4:Var → 5: y̅ → =

How to use a Casio calculator to find Mean and Standard Deviation
Press:
MODE → 3:STAT → 1: 1 - VAR
Enter data into the x and FREQ columns

If no FREQ column then PRESS:
SHIFT → SET UP → page down → 4: STAT → 1: ON

Press: AC: →
To find the mean:
SHIFT → 1 → 4: Var → 2: x̅

To find the standard deviation:
SHIFT → 1 → 4: Var → 3: σx
Remember: variance = (σx)^2
SECTION B

QUESTION 7

a. $A = 250$ and $B = 502$

b.
1. $\bar{x} \approx 47,14$ (Use calculator)

2. $65 < x \leq 75$

c.

d.
1. No, the data is skewed to the left since the mean is less than the median.

2. No, the mean is not a good indicator since it’s affected by the extremes. The median will be a better measure.
QUESTION 8

a. We are given $TP = 3$, then $TR = TP$ (radii are equal) and so $TR = 3$.
Also, we have $TP \perp OP$ (OP is a tangent to circle T). Hence we have that:

\[OP^2 = OT^2 - TP^2 \]
\[\therefore OP = 4 \]
\[\therefore OR = OP = 4 \] (tangents drawn from the same point O)
\[\therefore x_T = 4 \]
\[\therefore T(4; 3). \]

b. We have: $\tan T\hat{O}R = \frac{3}{4}$
\[\therefore T\hat{O}R = 36,87° \]

c. From the diagram, we have:

\[P\hat{O}R = 2 \times 36,87° \]
\[= 71,74° \] (properties of kite $OPTR$)
\[\therefore \sin P\hat{O}R = \frac{y_p}{4} \]
\[\therefore y_p = 4 \sin 71,74° \]
\[= 3,84 \text{ units}. \]

QUESTION 9

a. We have: $OC^2 = OB^2 + BC^2$
\[\therefore OC^2 = 20 + 80 \]
\[\therefore OC = \sqrt{100} = 10 \text{ units}. \]

b. From our diagram, we have:

\[\tan O\hat{C}B = \frac{\sqrt{20}}{\sqrt{80}} = \frac{1}{2} \]
\[\therefore m_{AC} = \tan(180° - O\hat{C}B) \]
\[\therefore m_{AC} = -\tan O\hat{C}B \]
\[\therefore m_{AC} = -\frac{1}{2} \]
c.

From part b. we know that \(m_{AC} = -\frac{1}{2} \). Then, \(m_{OB} = -\frac{1}{m_{AC}} = 2 \) (since \(OB \perp AC \)).

Then, in our diagram, we have that \(B(k; 2k) \). Now, using Pythag on \(\triangle OMB \), we have:

\[
OM^2 + BM^2 = OB^2
\]
\[
\therefore k^2 + (2k)^2 = (\sqrt{20})^2
\]
\[
\therefore 5k^2 = 20
\]
\[
\therefore k = 2
\]
\[
\therefore B(2; 4).
\]

d. Proof:

Let \(C\hat{O}B = \theta \).

\[
\therefore A\hat{O}B = 90^\circ - \theta
\]
\[
\therefore O\hat{A}B = 90^\circ - A\hat{O}B
\]
\[
= 90^\circ - (90^\circ - \theta)
\]
\[
= \theta
\]
\[
\therefore O\hat{A}B = C\hat{O}B
\]
\[
\therefore \triangle ABO \parallel \triangle OBC \text{ (AAA)}
\]
\[
\therefore \frac{AB}{OB} = \frac{BO}{BC}
\]
\[
\therefore AB = \frac{OB^2}{BC} \blacksquare
\]
QUESTION 10

a. Let $AB = 4k$ and $BC = 7k$. Then $AC = AB + BC = 11k$.
 \[\frac{FE}{FC} = \frac{AB}{AC} = \frac{4}{11}\] (By the Proportionality theorem)

b. Let $AG = 9m$ and $AF = 17m$. Then $GF = AF - AG = 8m$.
 \[\frac{CD}{DF} = \frac{AG}{GF} = \frac{9}{8}\] (By the Proportionality theorem)

C.

Let $FE = 4p$ and $EC = 7p$. By part b. we also have $FD = 8m$ and $DC = 9m$.
We are given that $FC = 374$. Hence we have:

\[FC = FE + EC = 11p = 374. \quad \text{Then} \quad p = 34. \quad \text{Similarly, we have} \]
\[FC = FD + DC = 17m = 374. \quad \text{Then} \quad m = 22. \]
Hence $ED = 374 - FE - DC = 374 - 4p - 9m = 40$ km.
Therefore it will take $40 \times 50 = 2000$ hours to build the section from E to D.
QUESTION 11

a. Proof:

We have $\hat{C}_2 = \hat{D}$ (angles in the same segment FE)

$\hat{C}_1 + \hat{C}_2 = 90^\circ$ (angle in a semi-circle)

$\therefore \hat{C}_1 + \hat{D} = 90^\circ$ (since $\hat{C}_2 = \hat{D}$)

$b. We are given that $\hat{D} = 38^\circ$. Let us make the following construction:

Construct chord BF.

Then, we have: $\hat{C}_1 = 90^\circ - \hat{C}_2$

$= 90^\circ - 38^\circ$ (since $\hat{C}_2 = \hat{D}$)

$= 52^\circ$

Now, $\hat{A}FB = \hat{C}_1 = 52^\circ$ (By the tan-chord thm.)

$\hat{ABF} = 52^\circ$ (By the tan-chord thm.)

$\therefore \hat{BAF} = 180^\circ - (\hat{ABF} + \hat{AFB})$

$= 180^\circ - (52^\circ + 52^\circ)$

$= 76^\circ$ (angles in a Δ)
QUESTION 12

a. We have: Area of $\Delta ADC = \frac{1}{2} \times AD \times DC \times \sin \widehat{ADC}$

 $= \frac{1}{2} \times 6 \times 6 \times \sin 130^\circ$

 $= 13.8 \text{ units}^2$

b. Proof:
 Since DABC is a cyclic quad (see diagram), we have:

 $\widehat{ABC} + \widehat{ADC} = 180^\circ$

 $\therefore \widehat{ADC} = 180^\circ - 130^\circ = 50^\circ$

 Now, $\widehat{ADB} = \widehat{DBC}$ ($AD = DC$, \therefore equal chords subtend equal angles)

 Hence $\widehat{DBC} = \frac{1}{2}(50^\circ) = 25^\circ$. \blacksquare

c. Firstly, we have that: $BC = 6 + 6 = 12$ units (line from the centre bisects chord)

 Now, using the sine rule:

 $\frac{12}{\sin \widehat{BCD}} = \frac{6}{\sin 25^\circ}$

 $\therefore \sin \widehat{BCD} = 2 \sin 25^\circ$

 $\therefore \sin \widehat{BCD} = 0.845 \ldots$

 \therefore Key angle $= 57.7^\circ$

 $\therefore \widehat{BCD} = 180^\circ - 57.7^\circ$

 $= 122.3^\circ$

 $\therefore \theta = 180^\circ - (25^\circ + 122.3^\circ)$ (Angles in ΔDBC)

 $\therefore \theta = 32.7^\circ$
d. When we lift point B vertically 9 units above point A, we get the following triangle:

We want to find angle \(T \hat{C} A \). Using the cosine rule on \(\Delta ADC \), we get:

\[
AC^2 = 6^2 + 6^2 - 2(6)(6) \cos 130^\circ
\]
\[
\therefore AC^2 = 118,28 \ldots
\]
\[
\therefore AC = 10,875 \ldots
\]
\[
\therefore \tan T \hat{C} A = \frac{TA}{AC}
\]
\[
\therefore \tan T \hat{C} A = \frac{9}{10,875} \ldots
\]
\[
\therefore T \hat{C} A = 39,6^\circ.
\]