

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 17 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	B✓	(1)
1.2	A✓	(1)
1.3	D✓	(1)
1.4	B✓	(1)
1.5	A or B ✓	(1)
1.6	B✓	(1)
1.7	A ✓	(1)
1.8	C✓	(1)
1.9	D✓	(1)
1.10	A✓	(1)
1.11	D✓	(1)
1.12	B✓	(1)
1.13	B✓	(1)
1.14	C√	(1)
1.15	A✓	(1)
1.16	C✓	(1)
1.17	D✓	(1)
1.18	A✓	(1)
1.19	C✓	(1)
1.20	D✓	(1) [20]

QUESTION 2: TOOLS AND EQUIPMENT

2.1	Causes of low compression:	/	
	Worn cylindersWorn compression rings	• •	
	 Worn piston 	• •	
	Worn valves	✓	
	Worn head gasket	\checkmark	
	(Any 3 >	(1)	(3)
2.2	Torsion:	,	
	Torsion is the twisting action in a member	√	
	caused by two opposing moments along the longitudinal axis.	✓	(2)
2.3	Multimeter:		
	A – LCD display screen	\checkmark	
	B – Range selector switch C – 10 A DC terminal socket (Input terminal)	▼ √	
	$D - V\Omega mA$ terminal socket (Input Terminal)	•	
	E – Common terminal socket	• √	(5)
2.4	Cylinder leakage tester:		
2 .7	 Listen at the carburettor and/or inlet manifold for hissing noise. 	\checkmark	
	(inlet valve is leaking)	\checkmark	
	• Listen to the exhaust pipe or exhaust manifold for a hissing noise.	\checkmark	
	(exhaust pipe is leaking)	\checkmark	
	Listen for hissing noise in the dipstick hole.	\checkmark	
	(piston rings worn)	\checkmark	
	 Remove the filler cap on the tappet cover and listen for hissing noise. (rings are worn) 	. ✓ ✓	
	 If you see bubbles in the radiator water, 	• •	
	(the cylinder head gasket is blown or the cylinder block is cracked)	• √	
	(Any 3)	(2)	(6)
2.5	MAGS/MIGS – meaning		
	MAGS: Metal Arc Gas Shielded	\checkmark	
	MIGS: Metal Inert Gas Shielded	\checkmark	(2)
2.6	MAGS/MIGS gases		
	Argon	\checkmark	
	• CO ₂	✓	
	• Helium	√ (1)	
	(Any 2 >	CT)	(2) [20]

NSC – Memorandum

QUESTION 3: MATERIALS

3.1	 Non-ferrous materials and composites: Non-ferrous Metals are metallic and composites are non-metallic. 			
	•	Non-ferrous metals are metallic and composites are non-ferrous metals are original substances and concombinations of two or more materials.	mposites are √√	(2)
			(Any 1 x 2)	(2)
3.2	Compr	essive strength test:		
	3.2.1	Material A has the highest compressive strength.	\checkmark	(1)
	3.2.2	The material that can resist a large compression for little deformation or compression, and has a higher strength.		(2)
3.3	Carbor	n steel:		
	•	Low-carbon steel	\checkmark	
	•	Medium-carbon steel	\checkmark	
	•	High-carbon steel	\checkmark	(3)
3.4		n steel – properties:		
		Greater hardness is obtained	√	
		Tensile strength is increased	√	
		Ductility is decreased	\checkmark	(4)
	•	Welding ability is decreased	v	(4)
3.5	Uses a	nd properties of engineering materials:		
	3.5.1	Uses of Duralumin:		
		It is used to make the following:		
		BarsSheets	v v	
		 Piston rods 	• •	
		 Tubes 	√	
		Rivets	\checkmark	
		 Motorcar and aircraft parts 	\checkmark	
			(Any 2 x 1)	(2)
		Properties of Duralumin:		
		 Lightweight 	√	
		• High tensile strength	\checkmark	
		 Good resistance to corrosion Hardons with ago 	✓	
		 Hardens with age 	(Any 2 x 1)	(2)
			(1) 2 1 1	(~)

4

3.5.2	Uses of PVC:		
	It is used to make:		
	Pipes and fittings	\checkmark	
	Cable and services ducting	\checkmark	
	Roofing and ceiling systems and membranes	\checkmark	
	Healthcare materials	\checkmark	
	Automotive industry materials	\checkmark	
	, , , , , , , , , , , , , , , , , , ,	(Any 2 x 1)	(2)
	Properties of PVC:		
	 Lightweight 	\checkmark	
	Weather resistant	\checkmark	
	Rigid or flexible	\checkmark	
	Clear or coloured	\checkmark	
	 Good electrical insulator 	\checkmark	
	 Good resistance to corrosion 	\checkmark	
		(Any 2 x 1)	(2) [20]

4.2

4.3

QUESTION 4: SAFETY, TERMINOLOGY AND JOINING METHODS

Beam bending tester: 4.1

Make sure that the object to be tested is firmly secured.	/
Make sure that all the holding devices are properly fitted. \checkmark	/
Check components of tester for wear. ✓	/
Check for leaks at the hydraulic pump ram and hose. \checkmark	/
	1
(Any 3 x 1)) (3)
ylinders:	
Store full cylinders apart from empty cylinders.	/
Keep in cool, dry place away from sunlight.	/
	(
	(
	/
•	d
	/
(Any 3 x 1) (3)
g operations:	
Upcut milling:	
Less vibration occurs.	/
• Less strain on the cutter and arbor.	/
• There is positive pressure on the feed screw spindle and its	
nuts because of the direction of the cutter.	/
	Make sure that the object to be tested is firmly secured. Make sure that all the holding devices are properly fitted. Check components of tester for wear. Check for leaks at the hydraulic pump ram and hose. Make sure that the tester is clean and free from oil and grease. (Any 3 x 1 ylinders: Store full cylinders apart from empty cylinders. Keep in cool, dry place away from sunlight. Acetylene cylinders should be stored in an upright position. Oxygen cylinders to fall. No oil and grease should come into contact with oxygen cylinders and fittings. (Any 3 x 1 g operations: Upcut milling: Less vibration occurs. Less strain on the cutter and arbor. There is positive pressure on the feed screw spindle and its

- A coarser feed may be used. • (Any 2 x 1)
- 4.3.2 **Down-cut milling:**
 - Deeper cuts can be made because the force of the cutter is • downwards. ✓
 - A finer finish is obtained. •

(2)

(2)

7 NSC – Memorandum

4.4 Indexing:

Indexing
$$=\frac{40}{A}$$
 \checkmark
 $=\frac{40}{60}$ \checkmark
 $=\frac{4 \times 4}{6 \times 4}$ \checkmark
 $=\frac{16}{24} \operatorname{or} \frac{20}{30} \operatorname{or} \frac{26}{39} \operatorname{or} \frac{28}{42} \operatorname{or} \frac{34}{51} \operatorname{or} \frac{36}{54} \operatorname{or} \frac{44}{66}$ \checkmark

16 holes on the 24-hole circle or 20 holes on the 30-hole circle or 26 holes on the 39-hole circle or 28 holes on the 42-hole circle or 34 holes on the 51-hole circle or 36 holes on the 51-hole circle or 44 holes on the 44-hole circle

4.4.2
$$\frac{D_{r}}{D_{v}} = (A-n) \times \frac{40}{A} \qquad OR \qquad \frac{D_{r}}{D_{v}} = (N-n) \times \frac{40}{N} \qquad \checkmark$$
$$\frac{D_{r}}{D_{v}} = (60-63) \times \frac{40}{60} \qquad \frac{D_{r}}{D_{v}} = (60-63) \times \frac{40}{60} \qquad \checkmark$$
$$\frac{D_{r}}{D_{v}} = \frac{-120}{60} \qquad \frac{D_{r}}{D_{v}} = \frac{-120}{60} \qquad \checkmark$$
$$\frac{D_{r}}{D_{v}} = \frac{-12 \times 4}{6 \times 4} \qquad \frac{D_{r}}{D_{v}} = \frac{-12 \times 4}{6 \times 4} \qquad \checkmark$$
$$\frac{D_{r}}{D_{v}} = \frac{-48}{24} \text{ or } \frac{56}{28} \text{ or } \frac{64}{32} \qquad \frac{D_{r}}{D_{v}} = \frac{-48}{24} \text{ or } \frac{56}{28} \text{ or } \frac{56}{32} \qquad \checkmark$$
(5)

(7)

(5)

4.5 **Cutting feed:**

$V = \pi D N$	\checkmark
$N = \frac{V}{\pi D}$	✓
$N = \frac{20}{\pi \times 0.08}$	✓
N = 79,577 r/min	✓

$f = f_1 \times T \times N$	\checkmark
$f = 0.08 \times 14 \times 79.577$	\checkmark
f = 89.13 mm/min	\checkmark

4.6 Ultrasonic test:

- A high frequency sound wave is send into the metal for a very short period of 1 to 3 microseconds.
- The same unit which was used to send the sound wave then acts as a receiver to listen to the ultrasonic waves it reflected through the metal.
- This cycle is repeated from one to five million times per second.
- The oscilloscope is calibrated only to pick up defects of a size that would be considered harmful.
- The oscilloscope wave pattern is also calibrated to show the distance between the searching unit and any defects found. \checkmark

Weld defects: 4.7

4.7.1 Slag inclusion:

Causes:

Included angle too narrow • Rapid cooling • Welding temperature too low • High viscosity of molten metal. Welding second run without removing slag (Any 2 x 1) (2)Prevention: Increase the included angle. • Let the welded metal cool slowly ٠ Pre-heat the metal • Remove slag before welding a second run (1) (Any 1 x 1)

	 4.7.2 Undercutting: Causes: Faulty electrode manipulation Arc length too long Current too high Welding speed too fast 	✓ ✓ ✓ ✓ (Any 2 x 1)	(2)
	 Prevention: Use a uniform weaving movement in butt joi Use the correct electrode Use the correct current Weld slowly 	nt ✓ ✓ ✓ (Any 1 x 1)	(1)
4.8	 Milling Cutters: 4.8.1 Spur gear – Involute cutter 4.8.2 Groove – Side-and-face cutter or end mill or slot drill 4.8.3 Rack – Involute cutter/Fly cutter 4.8.4 Blind hole – Flute-end mill 	√ √ √	(4)
4.9	 Dividing head of a milling machine: A = Index plate B = Index crank C = Sector arms D = Single-start worm E = Wormwheel/gear 	√ √ √ √	(5)
4.10	Classification of milling cutters: Arbor cutters Examples: Plain cutter , side cutter, staggered-tooth cutter, sl cutter, angular cutter, profile/form cutters, side-and-face cutter	•	(1) (1)
	Shank cutters Examples: End mill; shell end mill; T-slot cutter and Woodruff	✓ keyseat cutter (Any 1 x 1)	(1) (1) [50]

QUESTION 5: MAINTENANCE AND TURBINES

5.1.1	Parts:A.CrankshaftB.Clutch plateC.Gearbox shaftD.Diaphragm springE.Pressure plateF.Flywheel	\checkmark	(6)
5.1.2	Functions:		
	To provide friction between the clutch and p	pressure plate	
	• To connect the flywheel to the gearbox sha	√√ ift √√	(4)
5.1.3	Causes of slip:		
	Oil on the friction surfaces	\checkmark	
	Worn friction surfaces	\checkmark	
	 Lack of compressive force on the friction su 	•	
	weak springs	√ 	
	 Lack of compressive force on the friction su incorrect clutch settings 	urfaces caused by ✓	
	Uneven friction surfaces	\checkmark	
	Overheating	√	
		(Any 3 x 1)	(3)
5.1.4	Clutch types:		
	Single-disc clutch	\checkmark	
	Multi-disc clutch	\checkmark	
	Centrifugal clutch	\checkmark	
		(Any 2 x 1)	(2)
Functi	ons of lubricating oil:		
	Provides lubrication between contact surfaces	\checkmark	
	Resists oxidation	\checkmark	
•	Prevents rust	\checkmark	
•	Avoids foaming	\checkmark	
	Resists carbon forming	\checkmark	
	Prevents corrosion	\checkmark	
•	Resists extreme pressure	\checkmark	(_)
		(Any 3 x 1)	(3)

5.2

NSC – Memorandum

5.3 **Cutting fluid:**

- Avoid contamination of the cutting fluid by draining and regularly • replacing it.
- Always clean metal cuttings from the machine's splash tray after • use.
- Regularly wipe cutting fluid splashes off machine parts when machine • is stationary. \checkmark
- Ensure that the sump is topped up from time to time, and check that there is sufficient flow of cutting fluid to the cutting tool. \checkmark ✓
- Check for correct ratio of cutting fluid to water.

(Any 3 x 1) (3)

5.4 Supercharger

5.4.1	Centrifugal type	\checkmark	(1)
5.4.2	Parts:A.Inlet portB.Outlet portC.RotorD.Vane	\checkmark	(4)
5.4.3	 Operation: The engine drives the rotor Air is drawn in behind the rotor The air is forced around into a decreasing volume This raises the pressure of the air The air is forced into the inlet manifold and into the cylin 	✓ ✓ ✓ ✓ nders ✓	(5)
5.4.4	 Advantages of a supercharger: More power is developed compared to a similar vehicle without a supercharger Supercharged engines are more economical per given kilowatt output Less fuel is used compared to engine mass Power loss above sea level is eliminated (Any 3) 	✓ ✓ ✓	(3)

11

Copyright reserved

5.5	Steam turbines:• Condensing turbines• Non-condensing turbines• Reheat turbines• Reheat turbines• Extracting turbines• Induction turbines• (Any 3 x 1)	(3)
5.6		(3) [40]

QUESTION 6: FORCES, SYSTEMS AND CONTROL

- 6.1 **Hydraulics**:
 - 6.1.1 Fluid pressure:

Rounded off

Fully extended

6.1.2 Load lifted by piston B:

Rounded off

 $=6,49 \, kN$

Fully extended

 $A_{B} = \frac{\pi D^{2}}{4} \qquad \checkmark \qquad A_{B} = \frac{\pi D^{2}}{4}$ $= \frac{\pi \times (0.175)^{2}}{4} \qquad \qquad = \frac{\pi \times (0.175)^{2}}{4}$ $= 24,05 \times 10^{-3} m^{2} \qquad \checkmark \qquad = 0,024052818 m^{2}$

 \checkmark

$$P = \frac{F_B}{A_B} \qquad \checkmark$$

$$F_B = A_B \times P \qquad \checkmark$$

$$= (24,05 \times 10^{-3}) \times 0,27 \times 10^6 \qquad \checkmark$$

$$P = \frac{F_B}{A_B} \qquad \checkmark$$

$$F_B = A_B \times P \qquad \checkmark$$

$$= (0,024052818 \times 264523,45) \qquad \checkmark$$

(6)

√

 \checkmark

6.2 **Stress and Strain:**

	Fully extended	
√	$\varepsilon = \frac{\Delta L}{OL}$	√
	$=\frac{0,2}{300}$	
√	=0,00066666	✓
√	$E = \frac{\sigma}{\varepsilon}$	\checkmark
√ √	$\sigma = E \times \varepsilon$ = 245 × 10 ⁹ × 0,0006666666 = 163333333,3 Pa	√ √
		$\varepsilon = \frac{\Delta L}{OL}$ $= \frac{0.2}{300}$ $\checkmark = 0,00066666$ $\checkmark E = \frac{\sigma}{\varepsilon}$ $\sigma = E \times \varepsilon$ $\checkmark = 245 \times 10^9 \times 0,0006666666$

6.3 Belt drives:

6.3.1 Rotation frequency of the driven pulley:

$$N_A \times D_A = N_B \times D_B$$

$$N_B = \frac{N_A \times D_A}{D_B}$$

$$= \frac{1000 \times 0.25}{0.35}$$

$$= 714.29 \text{ r/min}$$

(3)

6.3.2 **Power transmitted:**

$$P = \frac{(T_1 - T_2)\pi DN}{60} \qquad \checkmark P = \frac{(200 - 90) \times \pi \times 0.25 \times 1000}{60} \qquad \checkmark P = 1439,90 Watts P = 1,44 kW \qquad \checkmark$$
(3)

6.3.3 Belt speed:

$$v = \frac{\pi DN}{60}$$

$$= \frac{\pi \times 0.25 \times 1000}{60}$$

$$v = 13.09 \, \text{m.s}^{-1}$$

6.4 **Gears:**

6.4.1 Rotation frequency of the output shaft:

$$\frac{N_F}{N_A} = \frac{T_A \times T_C \times T_E}{T_B \times T_D \times T_F} \quad or \quad \frac{N_F}{N_A} = \frac{Product of driven gears}{Product of driver gears} \quad \checkmark$$

$$N_F = \frac{T_A \times T_C \times T_E \times N_A}{T_B \times T_D \times T_F} \quad = \frac{24 \times 20 \times 42 \times 1440}{40 \times 48 \times 90} \quad \checkmark$$

$$N_F = \frac{24 \times 20 \times 42 \times 1440}{40 \times 48 \times 90} \quad = 168 \text{ r/min} \quad \checkmark$$
(4)

6.4.2 Velocity ratio:

$$VR = \frac{N_A}{N_F} \qquad \checkmark$$

$$VR = \frac{1440}{168}$$

$$VR = 8.57 : 1 \qquad \checkmark$$

(2)

(3)

(2)

(3)

(2)

6.5 **Differential wheel and axle:**

6.5.1 Mechanical advantage:

$$MA = \frac{W}{F}$$

$$MA = \frac{2400}{400}$$

$$MA = 6$$

6.5.2 Velocity ratio:

$$VR = \frac{2D}{d_1 - d_2} \qquad \checkmark$$

$$VR = \frac{2(210)}{160 - 140} \qquad \checkmark$$

$$VR = \frac{420}{20}$$

$$VR = 21:1 \qquad \checkmark$$

6.5.3 Mechanical efficiency:

$$\eta_{mech} = \frac{MA}{VR} \times 100\%$$

$$= \frac{6}{21} \times 100\%$$

$$= 28.57\%$$

Copyright reserved

6.6 **Clutches:**

6.6.1 Diameter of clutch plate:

$$T = \mu WnR \qquad \checkmark$$

$$R = \frac{T}{\mu Wn} \qquad \checkmark$$

$$R = \frac{336}{0.4 \times 3500 \times 2} \qquad \checkmark$$

$$R = 0.12 m$$

$$D = 2 \times 0.12 \qquad \checkmark$$

$$D = 0.24 m$$

$$= 240 mm \qquad \checkmark$$
(5)

6.6.2 **Power transmitted at** 3500 rpm in kW:

$$P = \frac{2 \pi N T}{60} \qquad \checkmark$$

$$P = \frac{2 \times \pi \times 3200 \times 336}{60} \qquad \checkmark$$

$$P = 112,59kW \qquad \checkmark$$

(3) **[50]**

TOTAL: 200