

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 14 pages.

Please turn over

ANSWER SHEET

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	A	В	С	D
1.2	Α	В	С	D
1.3	Α	В	C	D
1.4	A	В	С	D
1.5	Α	В	С	D
1.6	Α	В	С	D
1.7	A	В	С	D
1.8	A	В	C	D
1.9	Α	В	С	D
1.10	A	В	С	D
1.11	A	В	С	D
1.12	A	В	С	D
1.13	A	В	С	D
1.14	A	В	С	D
1.15	A	В	С	D
1.16	A	В	С	D
1.17	Α	В	С	D
1.18	A	В	С	D
1.19	A	В	С	D
1.20	A	В	С	D [20]

QUESTION 2: TOOLS AND EQUIPMENT

2.1 **Cylinder leakage test:**

2.1.1 Cylinder Leakage Test ✓

2.1.2 **Procedure for cylinder leakage test:**

- Run the engine until normal operating temperature. ✓
- Remove the spark plug from cylinder number three. ✓
- Install cylinder leakage tester to the spark plug hole of cylinder number three. ✓
- Remove the oil filler cap, radiator filler cap as well as the air filter. ✓
- Turn the crankshaft pulley until piston number three is at TDC (Power stroke) ✓
- Apply air pressure to cylinder. ✓
- Listen at the carburettor for a hissing noise. (Inlet valve is leaking) ✓
- Listen at the exhaust pipe for a hissing noise. (exhaust valve is leaking) ✓
- Listen at the dipstick for a hissing noise. (Piston rings are worn) ✓
- Listen at the oil filler hole for a hissing noise. (Piston rings are worn) ✓
- Look for bubbles in the radiator water, if so the cylinder head gasket is blown or the cylinder block is cracked. ✓

(11)

(1)

(1)

[50% (6 marks) will be credited for the steps related to any type of test other than that mentioned in 2.1.1]

2.2 **Spring tester:**

- Squareness/Roundness ✓ or (specifications of length and pressure) (2)
 - Correct tension ✓

2.3 Computer Numerical Control√

2.4 Metal arc gas shielded:

2.4.1 Advantages

- Can weld in any position. ✓
- Higher disposition rate. ✓
- Less operator skill required. ✓
- Long welds can be made without stops and starts. \checkmark
- Minimal post-weld cleaning / no slag removal is required. ✓
- Causes less deformation ✓
- Gives better finish ✓
- Faster than arc welding ✓
- Easy operation \checkmark Any 3 X 1

4 NSC – Memorandum

2.4.2 Gasses

• Argon \checkmark and CO $_2$ \checkmark

QUESTION 3: MATERIALS

3.1	• L • F • E • I	fibre: t gives a smooth finish✓ .ight in weight✓ Resistant to corrosion✓ Easy to mould✓ ts tough✓ t's strong ✓ Any 2 X 1	(2)
3.2	Materia	ss of materials: I B is the stiffer✓ : Material B is more resistant to a bending deformation√√	(3)
3.3	Non-fei	rous alloys:	
	3.3.1	A non-ferrous alloy is a metal that has a combination of two or more non-ferrous metals. $\checkmark\checkmark$	(2)
	3.3.2	Examples: • Brass√ • Bronze√ • White metal√ • Duralumin√ • Solder√ • Silver solder√	(3)
3.4	Compo	site:	
	3.4.1	 Thermosetting plastics Teflon√ Nylon√ 	(2)
	3.4.2	 Properties of Teflon and nylon to support choice: High friction resistance√ Light in weight√ Easy to work with√ Provides a smooth finish√ Needs no lubrication √ No/low maintenance √ Corrosion free √ Poor conductor of electricity √ Any 4 X 1 	(4)
3.5	Soft so Lead ✓	Ider and tin ✓or Antimony	(2)

Please turn over

(2) **[20]**

3.6 Silver solder

High melting point \checkmark Resistant to corrosion \checkmark

good conductor give a strong bead used to join a variety of materials

QUESTION 4: SAFETY, TERMINOLOGY AND JOINING METHODS

4.1 Hydraulic press:

- Make sure the object is firmly secured. ✓
- Make sure pins holding the beam is fitted properly. ✓
- Check pins for wear. ✓
- Check for oil leaks. ✓
- Make sure the area around the press is clean and free from oil. ✓
- Release pressure after operation ✓
- Personal safety ✓
- Safety guards ✓

4.2 **Gas cylinders:**

- Store oxygen and acetylene separately.✓
- Store full and empty cylinders apart. ✓
- Keep cylinders in a cool place away from heat. ✓
- Place cylinders in an upright position. ✓
- Don't drop cylinders. ✓
- Cylinder heads must be on. \checkmark
- Keep cylinders away from oil or grease. ✓
- Don't hammer on cylinders. \checkmark
- Secure cylinders properly. ✓
- Do not transport in horizontal position ✓ Any 4 X 1 (4)

4.3 **Cutting feed:**

$$V = \pi DN$$

$$N = \frac{V}{\pi D}$$

$$N = \frac{100}{\pi \times 0.12}$$

$$N = 265,2582385 \ rpm$$

$$f = 0.1 \times 40 \times 265,258$$

$$f = 1061,03 mm / min$$

Any 4 X 1

[20]

(4)

(2)

(5)

4.4 Indexing:

4.4.1	Indexing = $\frac{40}{A}$ \checkmark = $\frac{40}{70}$ \checkmark = $\frac{4 \times 4}{7 \times 4}$ or $\frac{4 \times 6}{7 \times 6}$ or $\frac{4}{7}$ \checkmark = $\frac{16}{28}$ or $\frac{24}{42}$ or $\frac{28}{49}$ \checkmark 16 holes on the 28 - hole circ \checkmark 24 holes on the 42 - hole circ.	
4.4.2	$\frac{D_r}{D_v} = (A - n) \times \frac{40}{A}$ $\frac{D_r}{D_v} = (70 - 67) \times \frac{40}{70}$ $\frac{D_r}{D_v} = \frac{120}{70}$ $\frac{D_r}{D_v} = \frac{12 \times 4}{7 \times 4}$ $\frac{D_r}{D_v} = \frac{48}{28}$	✓ ✓ ✓
	No full turn, 16 holes on the 28-holecircle with change gears $\frac{48}{28}$ or No full turn, 24 holes on the 42-holecircle with change gears $\frac{48}{28}$ or No full turn, 28 holes on the 49-holecircle with change gears $\frac{48}{28}$	•

4.4.3 Same direction/clockwise/positive ✓

(5)

(1)

4.5 **Gear drives:**

4.5.1	Driving gear /electrical motor gear√	(1)
4.5.2	Clockwise direction ✓	(1)
4.5.3	Output/final/driven gear/ washing machine gear√	(1)
4.5.4	Gear B $N_A \times T_A = N_B \times T_B$ $1200 \times 30 = N_D \times 22$ N_B $= 1636 \ rpm$	(3)

4.5.5 Gear A

$$PCD = m \times T$$

= 3×30 \checkmark
= 90 mm \checkmark (2)

4.5.6 **Outside diameter** *Outside diameter* (*OD*) = $PCD + 2 \times Module$ = $90 + (2 \times 3)$ = 96 mm

4.5.7 **Dedendum**

$$Dedendum = 1,157 \times m \qquad \checkmark$$
$$= 1,157 \times 3$$
$$= 3,471 \ mm \qquad \checkmark$$

OR

$$Dedendum = 1,25 \times m$$

$$= 1,25 \times 3$$

$$= 3,75 mm$$

4.6 Weld defects and testing:

4.6.1 **Causes porous weld:**

- Atmospheric contamination. ✓
- Surface contamination. ✓
- Dirty or wet electrodes. ✓
- Rusted MIG wire. ✓
- Type of welder ✓
- Current too high ✓
- Poor quality material ✓
- Incorrect method ✓
- Dirty welding rods ✓

Any 2 X 1 (2)

(2)

(2)

Please turn over

8

(1)

NSC – Memorandum

4.6.2 **Prevention:**

- Clean the workpiece. ✓
- Use clean, dry electrodes. ✓
- Use correct electrodes including low hydrogen electrodes \checkmark
 - Any 1 X 1

4.6.3 Causes of poor fusion:

- Welding current to low or too fast. ✓
- Welding pool too wide or too large√
- Wrong joint preparation root gap & chamfering). ✓
- Welding electrode to thick. ✓ Any 2 X 1 (2)

4.6.4 **Prevention:**

- Use correct current. ✓
- Be sure to melt the sides of the groove. \checkmark
- Groove must be free of other metals. \checkmark
- Width of the electrode must be small enough to fit in groove. ✓ Any 1 X 1 (1)

Liquid dye penetration test: 4.6.5

- Clean the weld that needs to be tested. \checkmark •
- The dye is sprayed onto the welded surface. \checkmark •
- Allowed dye to penetrate all the cracks. ✓
- Excess dye is cleaned away with a cleaning agent. ✓
- Allowed surface to dry. ✓
- Spray a developer onto the surface to bring out the dye • trapped in cracks. ✓
- The dye will show all the surface defects ✓

(7) [50]

QUESTION 5: MAINTENANCE AND TURBINES

5.1 **Lubrication:**

5.1.1	 Properties Viscosity must be correct. ✓ It must resist oxidation. ✓ It must avoid foaming. ✓ Resist carbon forming. ✓ It must prevent corrosion or rust✓. 	
	 It must resist extreme pressures. ✓ 	
	 Pour point ✓ Resistance to temperature change ✓ Any 5 X 1 	(5)
5.1.2	Viscosity of oil refers to the resistance of oil to flow./ thickness of oil $\checkmark\checkmark$	(2)
5.1.3	 EP Oils Manual gearbox ✓ Final drive or differential ✓ Heavy duty machinery Any 2 X 1 	(2)
5.1.4	Society of Automotive Engineers ✓	(1)
5.1.5	 Cutting Fluid Acts as lubricant ✓ Prevents chips from sticking ✓ Improves quality of finish ✓ Keeps the work piece cool ✓ Keeps the cutting tool cool ✓ Gives the cutting tool a longer life span ✓ 	

• Wash away/remove chips/swarfs Any 4 x 1 (4)

5.1.6 **Gear Lubrication**

COLUMN A	COLUMN B		
Engine	SAE 20W50	B√	
Gearbox	Extreme pressure oil (EP 90)	D√	
Differential	Extreme pressure oil (EP 90)	D√	
Power steering	Hydraulic oil	A√	(4)

5.1.7 Automatic transmission Fluid

- Transmitting power via torque converter ✓
- Acting as hydraulic fluid via servo cylinder ✓
- Acts as a heat-transfer medium ✓
- Acts as lubricant for gears and bearings ✓ Any 2 X 1 (2)

5.2	Blower:			
	5.2.1	Roots blower ✓		(1)
	5.2.2	1. Inlet ✓		
		 Outlet ✓ Rotors ✓ 		(3)
	5.2.3	 Operation The engine drives the rotors by means of g Air is trapped between the rotor and alumi This air is carried around the outside of pushed into a decreasing volume. ✓ This raises the pressure of the air with the of the rotors. ✓ The air is forced into the inlet manifold and cylinders. ✓ 	nium casing. ✓ the rotor and is e rotational speed	(5)
5.3	р • Т	o fill the cylinder with air pressure higher than atmorphisms for the cylinder with air pressure higher than atmorphisms \checkmark o increase the compression pressure in the cylinder		
		o increase volumetric efficiency of the engine. \checkmark lo lag in relation to turbo charger \checkmark		
		btain more power ✓	Any 3 X 1	(3)
5.4	Superch	hargers and turbochargers		
••••	• S	Supercharger is mechanically driven by gears or a burble burble burble burble by the exhaust gases. \checkmark	oelt. ✓	(2)
5.5	Steam t	urbine uses		
	• T	o drive generators to generate electricity. \checkmark		
		o operate ships. ✓	A 0 V 4	(2)
	•	o operate pumps ✓	Any 2 X 1	(2)
5.6	Advanta	ages of steam turbines		
		is compact. ✓		
		lo lubrication is required. \checkmark	eted (
		team turbine speeds can be more accurately regul variety of fuels can be used to obtain steam. ✓	aieu. 🕈	
		team turbines are more economical. \checkmark		
	• H	ligher speeds can be obtained as compared to inte	rnal	
		ombustion engines. ✓	Any 4 V 1	(4)
	• L	ow maintenance 🗸	Any 4 X 1	(')

[40]

✓

√

✓

√

✓

 \checkmark

QUESTION 6: FORCES AND SYSTEMS AND CONTROL

6.1 **Hydraulics:**

6.1.1

Fluid pressure:

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$A_{B} = \frac{\pi (0,2)^{2}}{4}$$

$$A_{B} = 31,41593 \times 10^{-3} m^{2}$$

$$P = \frac{F_{B}}{A_{B}}$$

$$P = \frac{15 \times 10^{3}}{31,41593 \times 10^{-3}}$$

$$= 477464,8293 Pa$$

$$= 0,48 MPa$$

(6)

6.1.2 Force F on piston A:

$$A_{A} = \frac{\pi D^{2}}{4} \qquad \checkmark$$

$$A_{A} = \frac{\pi \times (0,075)^{2}}{4} \qquad \checkmark$$

$$A_{A} = 4,4178 \times 10^{-3}m^{2} \qquad \checkmark$$

$$P_{A} = P_{B}$$

$$P_{A} = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$F_{A} = (0,48 \times 10^{6})(4,42 \times 10^{-3}) \qquad \checkmark$$

$$F_{A} = 2,10935 \text{ kN} \qquad \checkmark$$

$$= 2,11 \text{ kN}$$

$$or \quad \frac{F_{I}}{A_{I}} = \frac{F_{2}}{A_{2}} \qquad \checkmark$$

$$F_{I} = \frac{F_{2} \times A_{I}}{A_{2}} \qquad \checkmark$$

$$= \frac{15 \times 10^{3} \times 4,4178 \times 10^{-3}}{31,41593 \times 10^{-3}} \qquad \checkmark$$

$$= 2,11 \text{ kN}$$

(6)

6.1.3 **Distance 'X':**

$$V_{B} = V_{A}$$

$$A_{B} \times X = A_{A} \times L_{A}$$

$$X = \frac{A_{A} \times L_{A}}{A_{B}}$$

$$X = \frac{(4,42 \times 10^{-3})(0,12)}{31,41 \times 10^{-3}}$$

$$X = 16,87499773 \text{ mm / stroke}$$

$$X = 16,87499773 \times 16$$

$$X = 269,99 \text{ mm}$$

$$= 270 \text{ mm}$$

6.2 **Stress and strain:**

6.2.1 Side length:

$$\sigma = \frac{F}{A} \qquad \checkmark$$

$$A = \frac{F}{\sigma} \qquad \checkmark$$

$$A = \frac{30 \times 10^3}{6 \times 10^6} \qquad \checkmark$$

$$A = 5 \times 10^{-3} m^2 \qquad \checkmark$$

$$A = L^2 \qquad \checkmark$$

$$L = \sqrt{A} \qquad \checkmark$$

$$L = \sqrt{5 \times 10^{-3} m^2}$$

L = 0,0707106 m

$$L = 70,71 \text{ mm}$$
 \checkmark

(8)

(6)

6.2.2 **Strain:**

$$E = \frac{\sigma}{\epsilon} \qquad \checkmark$$
$$\varepsilon = \frac{\sigma}{E} \qquad \checkmark$$
$$\varepsilon = \frac{6 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$
$$\varepsilon = 0,06667 \times 10^{-3} \qquad \checkmark$$
$$= 6,67 \times 10^{-5} \qquad \checkmark$$

Copyright reserved

(4)

13 NSC – Memorandum

NSC – Memoran

6.2.3 Change in length:

$$\varepsilon = \frac{\Delta \ell}{o\ell} \qquad \checkmark$$

$$\Delta \ell = \varepsilon \times o\ell$$

$$\Delta \ell = 6,67 \times 10^{-5} \times 200 \qquad \checkmark$$

$$= 0,013 \,\mathrm{mm} \qquad \checkmark \qquad (3)$$

6.3 Belt drives:

6.3.1	Rotational frequency of the driven pulley		
	$(D_{DN}+t) \times N_{DN} = (D_{DR}+t) \times N_{DR}$	1	

$$t) \times N_{DN} = (D_{DR} + t) \times N_{DR}$$

$$N_{DN} = \frac{(D_{DR} + t) \times N_{DR}}{(D_{DN} + t)}$$

$$= \frac{(475 + 12) \times 1440}{(180 + 12)}$$

$$= \frac{487 \times 1440}{192}$$

$$= 3652,5 rpm$$

Or

$$N_1 D_1 = N_2 D_2$$

$$N_2 = \frac{N_1 D_1}{D_2}$$

$$= \frac{475 \times 1440}{180}$$

$$= 3800 \text{ rpm}$$

6.3.2 Belt speed:

$$V = \frac{\pi (D+t) \times N}{60} \qquad \checkmark$$

= $\frac{\pi (0.475 + 0.012) \times 1440}{60} \qquad \checkmark$
= $36.72 \, m.s^{-1} \qquad \checkmark$ (3)

6.4 **Clutches:**

6.4.1 The maximum torque transmitted:

$$T = \mu W n R$$

$$T = 0.3 \times 4 \times 10^{3} \times 2 \times \frac{0.28}{2}$$

$$= 0.3 \times 4 \times 10^{3} \times 2 \times 0.14$$

$$= 336 Nm$$

$$\checkmark$$
(5)

(5)

6.4.2 Power transmitted at 3500 rpm in kW:

$$P = \frac{2\pi NT}{60} \qquad \checkmark$$

$$P = \frac{2\pi \times 3500 \times 336}{60} \qquad \checkmark$$

$$P = 123,15 \, kW \qquad \checkmark$$

(4) **[50]**

200 TOTAL: