

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

_ _ _ _ _ _ _ _ _

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

NOVEMBER 2016

FINAL MARKING GUIDELINE

.

MARKS: 150

I I

Symbol	Explanation
М	Method
MA	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG/RD	Reading from a table/graph/map/diagram
SF	Correct substitution in a formula
0	Opinion/reason/deduction/example
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NP	No penalty for rounding
AO	Answer only full marks
J	Justification

This memorandum consists of 19 pages.

Please turn over

QUES	TION 1 [36 MARKS]		
Ques	Solution	Explanation	T&L
1.1.1	$P_{(\text{even number date})} = \frac{11}{22} \frac{\checkmark \checkmark A}{\checkmark A}$	2A numerator 1A denominator	P L2
	$=\frac{1}{2}$ or 0,5 or 50%	AO (3)	
1.1.2	• Quality of bank services / security / perks. $\checkmark \circ \circ$ O		F L4
	• Proximity or accessibility of the bank. $\checkmark \checkmark O$	20 reason	
	OR • Marketing/advertising appeal ✓✓O		
	• Loyalty to bank $\checkmark \checkmark O$		
	• Religious reasons / Economical reasons		
	Any other suitable reason	(2)	
1.1.3	2014 Fee = $R3,50 + 1,1\% \times R1\ 000$ $\checkmark SF$ = $R14,50$ $\checkmark CA$	1SF substituting R1000 1CA 2014 fee	F L2
	% change = $\left(\frac{R15,50}{R14,50} - 1\right) \times 100\%$ \checkmark SF	1SF correct values	
	$= \left(\frac{\text{R1,00}}{\text{R14,50}}\right) \times 100\%$ = 6, 8965517 A \approx 6,9% \sqrt{R}	1CA simplification 1R rounding	
		OR	
	OR % change = $\left(\frac{R15,50}{R3,50+0,011\times R1000} - 1\right) \times 100\%$	1SF correct values 1SF substituting R1000	
	$= \left(\frac{R15,50}{R14,50} - 1\right) \times \frac{100\%}{CA}$	1CA 2014 fee	
	= 6,8965517 \checkmark CA A \approx 6,9% \checkmark R	1CA simplification 1R rounding (5)	

Ques	Solution	Explanation	T&L
1.1.4	Withdrawal fee R15 000 at Bank X		F
	\checkmark SF = R3.95 + 0.013 × R15 000	1SF substituting	L4
	$= R198.95 \checkmark CA$	101 Substituting	
	Fees for 4 withdrawals	1CA weekly charges	
	= R198,95 × 4		
	$=$ R795,80 \checkmark CA	1CA fees for 4 withdrawals	
	Withdrawal fee for R15 000 at Bank Y		
	= R4,00 + R15 000 × 1,15%		
	$= R176,50 \checkmark CA$	1CA charges	
	Fees for 4 withdrawals = $4 \times R176,50$		
	$=$ R706,00 \checkmark CA	1CA fees for 4	
	Difference in fees = $R795,80 - R706,00$	withdrawais	
	$= R89,80 \checkmark CA$	1CA difference	
	It is NOT VALID. $\checkmark O$	10 conclusion	
	OR	OR	
	Withdrawal fee R15 000 at Bank X \checkmark MA = R3,95 + 0,013 × R15 000	1MA substituting	
	$= R198,95 \checkmark CA$	1CA weekly charges	
	Withdrawal fee for R15 000 at Bank Y		
	$= R4,00 + R15\ 000 \times 1,15\%$		
	= R176,50 ✓CA	1CA charges	
	\checkmark CA Difference in fees = R198,95 - R176,50 = R22,45	1CA difference	
	Saving on 4 withdrawals = $R22,45 \times 4 = R89,80$	1M fees for 4 withdrawals	
	It is NOT VALUE \sqrt{O}	1CA October	
		charges 10 conclusion	
	OR	OR	

Ques	Solution	Explanation	T&L
	Bank X: Fee per R1 000 = R3,95 + R1,30 ÷ 100 × 1 000 \checkmark MA = R16,95 \checkmark CA Withdrawal fee for R15 000 = R16,95 × 15 = R254,25 For 4 withdrawals : R254,25 × 4 \checkmark M = R1 017	1MA substituting 1CA weekly charges 1M fees for 4 withdrawals	
	Bank Y: Withdrawal fee for 4 times R15 000 = R15,50 \times 4 \times 15 \checkmark CA = R930 \checkmark CA Difference in fees = R1 017 - R930 = R87 \checkmark CA It is NOT VALID	1CA charges 1CA October charges 1CA difference 1O conclusion (Max of 6 marks for a total withdrawal of R60 000 .) (7)	
1.1.5	Wage for 4 full weeks = R2 142,85 × 4 \checkmark A = R8 571,40 Wage for 2 days = $\frac{\text{R2142,85}}{5} \times 2 \qquad \checkmark$ M = R857,14	1A 4 weeks wage 1M divide by 5 1M multiply by2	F L2
	Total wage = R8 571,40 + R857,14 = R9 428,54 \checkmark CA	1CA total wage	
	Average day wage = $\frac{R2142,85}{5}$ \checkmark M OR $\frac{R2142,85 \times 4}{20}$ = R428.57 \checkmark A	OR 1M divide by 5 1A daily wage	
	Total wage for October = $22 \times R428,57$ $\checkmark M$	1M multiply by 22	
	$= R9 \ 428,54 \qquad \checkmark CA$	1CA total wage	
	OR	OR	
	2 days of a five day week = $\frac{2}{5}$ of $\stackrel{\checkmark}{a}$ week	1M divide by 5	
	Total number of weeks = $4\frac{2}{5}$ × A OR 4,4 Total wage for October = $4\frac{2}{5}$ × R2142,85 × M	1A number of weeks 1M multiply by weekly	
	$= R9 428,54 \checkmark CA$ OR	wage 1CA total wage OR	

Ques	Solution	Explanation	T&L
	Monthly wage = R2142,85 $\times \frac{52}{12}$ \checkmark A \checkmark MA	1M multiplying 1A 52 weeks in year 1MA dividing by 12	
	= R9 285,68 √CA	1CA total wage (4)	
1.2.1	 More small/local companies may have entered the market √√0 The increased use of smartphones, laptops and tablets √√0 Locally produced no need to import. Cost of transport increased √√0 Economical reasons / factors √√0 Maritime piracy / security √√0 	20 factor with reason 20 factor with reason	D L4
	 Other means of transport used \$\frac{1}{\sqrt{0}}\$ Durability - demand for new computers became less Or any other valid factors with reasons 	(4)	
1.2.2	Q1 of 2012: \checkmark MA (15,7 + 11,7 + 10,1 + 9 + 5,4) million = 51,9 million \checkmark CA or 51 900 000 Q1 of 2013: (12 + 11 7 + 0 + (2 + 4.4)) \checkmark W	1MA adding correct values 1CA total shipment in 2012	D L2
	= (12 + 11,7 + 9 + 6,2 + 4,4) million = 43,3 million or 43 300 000	1MA total shipment in 2013	
	Difference between 2013 and 2012 $\checkmark CA$ = 51,9 mil - 43,3 mil = 8,6 million or 8 600 000	1CA difference in million	
	OR	OR	

Ques	Solution	Explanation	T&L
	Differences (in millions) for A = 15,7 - 12,0 = 3,7 $B = 11,7 - 11,7 = 0 \checkmark A$ C = 10,1 - 9,0 = 1,1	2A differences in millions	
	$D = 9,0 - 6,2 = 2,8 \checkmark A$ $E = 5,4 - 4,4 = 1 \checkmark M$ Total difference = (3,7 + 1,1 + 2,8 + 1) million = 8,6 million \checkmark CA	1M adding all differences 1CA total difference in million Penalty if million omitted (4)	
1.2.3	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	1RT correct values 1M calculating % change 1CA % change	D L4
	% change D = $\frac{6200000 - 9000000}{9000000} \times 100\%$ \checkmark M	1RT correct values 1M calculating % change	
	= - 31,11111111% ✓CA	1CA % change	
	The statement is NOT VALID. \checkmark O	1O conclusion	
	OR	OR	
	Percentage of 2012 shipped in 2013:		
	By A: $\frac{\sqrt{RT}}{15.7} \times 100\%$	1RT correct values	
	$= 76,43\%$ \checkmark A	1A percentage	
	:. Percentage decrease = $100\% - 76,43\% = 23,57\%$ \checkmark M	1M % change	
	\checkmark RT By D: 6,2 $\times 100\%$	1RT correct values	
	$ \begin{array}{c} By \ D, \ \frac{9}{9} \times 100\% \\ = 68,89\% \checkmark A \end{array} $	1A percentage	
	✓ M ∴ Percentage decrease = $100\% - 68,89\% = 31,11\%$	1M % change	
	$\checkmark O$ D shows the greatest decrease, the statement is NOT VALID	10 conclusion	
		NP	
		(7) [36]	

QUES	TION 2 [47 MARKS]		
Ques	Solution	Explanation	T&L
2.1.1 (a)	$\checkmark A$ Amount × 109,7% = R218,9 billion Total amount spent = $\frac{R218,9 \text{ billion}}{109,7\%} \checkmark M$ = R199 544 211 500 $\checkmark CA$	1A correct value and % 1M dividing by 109,7%	F L2
	or R199,54 billion or R1,9954 × 10 ¹¹	1CA total amount NP (3)	E
2.1.1 (b)	It is more appropriate to round to one decimal place. If a rand value in billions is rounded off to a whole number, the amount that is added or lost is hundreds of millions of rands.	1A statement 2O explanation	F L4
	OR $\checkmark A$ It is not appropriate to round to off to a whole number since it has a big financial implication $\checkmark \checkmark O$	(Note: More appropriate can be implied in the statement) (3)	
2.1.2	\checkmark A International: 43% of R 218,9 billion = R94,127 billion Number of visitors = 14,3 million or 14 300 000	1A percentage 1A amount	F L3
	Average spent per visitor = $\frac{R94\ 127\ 000\ 000}{14\ 300\ 000\ \checkmark}$ MA = R6 582 31 \checkmark CA	1C conversion 1MA average 1CA value	
	This is NOT correct. $\checkmark O$	10 conclusion	
	OR	OR	
	\checkmark A \checkmark A International: 43% × R 218,9 billion = R94,127 billion	1A percentage 1A amount	
	✓C	1C conversion	
	Average spent per visitor = $\frac{\text{K94,127} \times 1000 \text{ million}}{14,3 \text{ million}}$ $\checkmark \text{MA}$	1MA average	
	$= R6\ 582,31 \qquad \checkmark CA$	1CA value	
	This is NOT correct. $\checkmark O$	10 conclusion	
	OR	OR	

Ques	Solution	Explanation	T&L
	Amount spent by the International visitors \sqrt{MA}	1MA multiplying	
	$= R6 580 \times 14,3 \text{ million}$ $\checkmark A \qquad \checkmark C$ $= R94 094 \text{ million} = R94,094 \text{ billion}$	1A amount 1C conversion	
	But spent by international tourists is $\checkmark A$ $\checkmark A$ $43\% \times R$ 218,9 billion = R94,127 billion	1A percentage 1A amount	
	The amount was NOT CORRECT \checkmark O	10 conclusion (6)	
2.1.3	$\checkmark A \qquad \checkmark A$ Air transport and road transport	1A for each item (2)	F L2
2.1.4	Payment of tourism levy $\checkmark \checkmark O$	20 example	F L4
	✓✓O Purchase of souvenirs		
	OR		
	Entrance lees to tourist attractions		
	Any other suitable example \overrightarrow{VO}	(2)	
2.1.5	Growth in $2014 = 2,9\% \times R103,6$ billion $\checkmark M$ = R3,0044 billion	1M multiplying	
	GDP contribution (2014) = (R3,0044 + R103,6) billion = R106,6044 billion \checkmark CA	1M adding 1CA amount in 2014	
	Growth in 2015 = 2,9% × R106,6044 billion = R3,0915276 billion		
	GDP contribution (2015) = (R3,0915276 + R106,6044) billion = R109,6959276 billion ✓CA	1CA amount in 2015	
	Growth in $2016 = 2,9\% \times R109,6959276$ billion = R3,1811819 billion		
	GDP contribution (2016) = $(R3,1811819 + R109,6959276)$ bil. = R112,8771095 billion \checkmark CA	1CA amount in 2016	
	$=$ R112 877 million \checkmark R or R112 877 000 000 or R112.877 billion	1R correct rounding	
	OR	OR	

Ques	Solution	Explanation	T&L
2.1.5	GDP contribution (2014) = $102,9\% \times R103,6$ billion = $106,6044$ billion $\checkmark CA$ GDP contribution 2015 = $102,9\% \times R106,6044$ billion = $109,6959276$ billion $\checkmark CA$	1M multiplying 1A 102,9% 1CA amount in 2014 1CA amount in 2015	F L3
	GDP contribution 2016 = 102,9% × R109,6959276 billion = R112,8771095 billion. ✓CA = R112 877 million ✓R or R112 877 000 000	1CA amount in 2016 1R correct rounding	
	OR		
	GDP contribution 2016 ✓M ✓A ✓A = R103,6 billion × 102,9% × 102,9% × 102,9% = R112,8771095 billion. ✓CA = R112,877 billion or R112 877 million ✓C or R112 877 000 000 ✓R	1M multiplying 2A 102,9% CA amount in 2016 1C conversion 1R correct rounding (6)	
2.2.1 (a)	$\sqrt[4]{\sqrt{RT}}$ Stopover times = 5 + 20 + 5 + 2 + 8 + 2 + 2 + 2 + 2 + 23 + $\sqrt[4]{26}$ + 3 + 17 + 3 + 14 + 3 + 3 = 138 minutes or 2 hrs and 18 minutes or 2,3 hours	3RT correct stopover times 1M adding stopover times 1CA total stopover time Stopover times: One or two errors only 1 mark penalty, Three or four errors 2 mark penalty AO (5)	D L2
2.2.1 (b)	2 and 3 minutes $\checkmark \checkmark CA$	CA From Q2.2.1 (a) 2CA modal time (2)	D L2

9

Ques	Solution	Explanation	T&L
0.0.1		CA From Q2.2.1(a)	
2.2.1 (c)	Actual train travel time:	1RT start and end time	M L3
(0)	13:24 (day2) to $17:30$ (day1) – stopover time		20
	\checkmark CA = 19 hr 54 min - 2 hr 18 min \checkmark M	1CA 19 hours 54 min	
		stopover time	
	$= 17 \text{ hr } 36 \text{ min} = 17, 6 \text{ hr} \checkmark \text{C}$	1C conversion	
	$\mathbf{D} = \mathbf{S} \times \mathbf{T}$		
	992 km = S × 17hr 36 min \checkmark SF	1SF substitution	
	$S = \frac{992 \text{ km}}{\checkmark S}$	1S changing subject of	
	17,6 hour	Iomuta	
	= 56,36 km/h \checkmark CA	1CA simplification	
	OR	OR	
	Total time = 24 hours $-$ 17h30 + 13h24 = 19hr 54 min	1RT start and end time	
	101 51 101 51 101	1M subtracting	
	19hr 54 min – 2 hrs 18 min = 17 hrs 36 min = 17,6 hr	stopover time	
	$D = S \times T$	1C conversion	
	992 km = S \times 17,6 hr	1SF substitution	
	$S = -\frac{992 \text{ km}}{\checkmark}$ $\checkmark S$	1S changing subject of	
	17,6 hour	Iormula	
	≈ 56 km/h ✓CA	1CA simplification	
	OR	OR	
	From 17:30 to $00:00 = 6$ hrs 30 min		
	From 00:00 to $13.24 = 13$ hrs 24 min	1RT start and end	
	$\frac{1}{2}$	times	
	Time of journey = 19 hrs and 54 minutes \checkmark M	1CA trin times	
	Travel time = $19 \text{ hr } 54 \text{ min} - 2 \text{ hr } 18 \text{ min}$	ICA trip time	
	= 17 hr 36 min	1M subtracting stopover time	
	$D = S \times T$	I · ·	
	992 km = S \times 17,6 hr \checkmark SF	1SF substitution	
	002 km	1S changing subject of	
	Average Speed = $\frac{992 \text{ km}}{17.6 \text{ hour}} \checkmark S$	formula	
	$=$ 56,36 km/h \checkmark CA	NP	
		(7)	

Copyright reserved

Please turn over

Ques	Solution	Explanation	T&L
2.2.2	Forward trip in January:		Fin L3
	Parents = $2 \times R560 = R1 \ 120 \ \checkmark MA$	1MA two adult price	
	Father = $R560 - R560 \times 25\%$ OR $R560 \times 75\%$ = $R420 \checkmark CA$	1MA discounted price for over 55 yrs 1CA father's fare	
	Children's fare = $R560 \times 80\% = R448$ $\checkmark MA$ Two children = $2 \times R448 = R896$ $\checkmark CA$	1MA children fare 1CA total children's fare	
	Total fare for family: $R1 120 + R420 + R896 = R2 436$	1CA Jan total fares	
	Return trip in February:		
	Parents fare $= 2 \times R490 = R980$ $\checkmark A$	1A adults Feb fare	
	Father = R490 minus R490 \times 25% or R490 \times 75%		
	$= R367,50 \checkmark A$	1A senior citizen fare	
	Two children = $2 \times (R490 - R490 \times 50\%)$		
	$= R490 \checkmark A$	1A children Feb fare	
	Total fare for return trip = $R980 + R490 + R367,50$		
	= R1 837,50 ✓CA	1CA total Feb trip's fare	
	Total cost for both trips = $R2 436 + R1 837,50$	1CA total trip fare (Note: Max of 6 marks	
	= R4 273,50 ✓CA	if only one trip is calculated ; Max of 9 marks for using the same fare for both trip)	
	OR	OR	

11

Ques	Solution	Explanation	T&L
	\checkmark MA \checkmark MAFather's fare = (R560 + R490) × 75% \checkmark M	1MA adding correct values 1MA 75 %	
	= R787,50 VCA	1M % calculation 1CA simplification	
	Parents' fare = $2 \times (R560 + 490) \checkmark MA$ = R2 100 $\checkmark CA$	1MA adding and multiplying 1CA simplification	
	$\checkmark MA \qquad \checkmark MA \qquad \checkmark MA$ Children's fare = (R560 × 80% + R490 × 50%) × 2	1MA 80% 1MA 50% 1A correct values	
	$=$ R1 386 \checkmark CA	1CA simplification	
	Total fare for both trips = $R787,50 + R2\ 100 + R1\ 386$ = $R4\ 273,50$ \checkmark CA	1CA total return trip fare	
		(11)	
		[47]	

QUES	QUESTION 3 [31 MARKS]			
Ques	Solution	Explanation	T&L	
3.1.1	Capacity of section C = 5 m × 1, 2 m × 15 m \checkmark SF = 90 m ³ \checkmark CA Capacity of section A = 2 m × 12,5 m × 15 m \checkmark SF = 375 m ³ \checkmark CA	1SF correct values 1CA capacity section C 1SF correct values 1CA capacity section A	M L3	
	Maximum capacity = $90 \text{ m}^3 + 375 \text{ m}^3 + 300 \text{ m}^3 \checkmark \text{MA}$ = 765 m^3	1MA adding capacities in m ³		
	OR	OR		
	Maximum capacity = Capacity of section (A + B + C) = $2 \text{ m} \times 12,5 \text{ m} \times 15 \text{ m} + 300 \text{ m}^3 + 5 \text{ m} \times 1,2 \text{ m} \times 15 \text{ m}$ $\checkmark CA \qquad \checkmark CA$ = $375 \text{ m}^3 + 300 \text{ m}^3 + 90 \text{ m}^3 \checkmark MA$	1SF Correct values for A 1SF correct values for C 1CA capacity section A 1CA capacity section C		
	$= 765 \text{ m}^3$	1MA adding capacities in m ³		
	OR	OR		
	Volume = $30 \text{ m} \times 15 \text{ m} \times 2 \text{ m} \checkmark \text{SF}$	1SF volume		
	$=900 \text{ m}^3 \checkmark \text{CA}$	1CA volume section A		
	Volume beneath C = 5 m \times 15 m \times 0,8 m			
	$= 60 \text{ m}^3$ Volume beneath B = $\frac{1}{2} \times 12,5 \text{ m} \times 15 \text{ m} \times 0,8 \text{ m} \checkmark \text{SF}$	1SF volume beneath B		
	$= 75 \text{ m}^3 \checkmark \text{CA}$	1CA volume beneath B		
	Maximum capacity = 900 m ³ - 60 m ³ - 75 m ³ = 765 m ³ \checkmark MA	1MA subtracting volume in m ³		
		(5)		
3.1.2	Volume of water = 94% × 765 m ³ = 719,1 m ³ = 719 100 ℓ \checkmark C = $\frac{719 100 \times 1}{3,785}$ gallons \checkmark C $\approx 189 986,79$ gallons \checkmark CA	1M calculating % 1C convert to litres 1C convert to gal. 1CA simplification	M L3	
	OR	OR		

Ques	Solution	Explanation	T&L
	Capacity (in litres) = $765 \text{ m}^3 \times 1\ 000 = 765\ 000\ \ell \checkmark C$	1C convert to litres	
	Capacity(in gallons) = $\frac{765000}{3,785}$ \checkmark C = 202 113,6063	1C convert to gal.	
	Volume of water = $94\% \times 202\ 113,6063^{\checkmark}M$	1M calculating %	
	= 189 986,79 gallons ✓CA	1CA simplification NP	
		(4)	
3.1.3	In 1 hour 2 350 litres of water will flow. In 1 day: 24 ×2 350 litres $\checkmark MA$ = 56 400 litres will flow $\checkmark CA$ In 2 ¹ / ₂ days amount of water flowing = 2 ¹ / ₂ × 56 400 litres = 141 000 litres $\checkmark CA$	1MA using flow rate 1CA water in 1 day 1M multiplying 1CA simplification	
	\therefore Statement is NOT VALID. $\checkmark 0$	10 conclusion	
	OR Time to fill swimming pool = $\frac{135000\ell}{2350\ell/h}$ \checkmark MA	OR 1MA finding time taken	
	≈ 57,4468 hours \checkmark CA	1CA time	
	57,4468 hrs = 2 days and 9 h 27 min \checkmark M	1M splitting calc. hrs	
	Two and a half days = 2 days 12 hours \checkmark C	1C converting two and a half days	
	Statement is NOT VALID VO	10 conclusion	
	OR	OR	
	Time to fill swimming pool = $\frac{135000\ell}{2350\ell/h}$ \checkmark MA	1MA finding time taken	
	\approx 57,4468 hours \checkmark CA	1CA time	
	\checkmark MA \cdot Two and a half days = (2 × 24 + 12) hours = 60 hours \checkmark A	1MA multiply with 24 and add 12	
	\therefore Statement is NOT VALID $\checkmark O$	10 conclusion	
	OR	OR	

Ques	Solution	Explanation	T&L
3.1.3	Time to fill swimming pool = $\frac{135000\ell}{2350\ell/h}$ \checkmark MA	1MA finding time taken	
	≈ 57,4468 hours \checkmark CA	1CA time	
	57,4468 hours \div 24 hours/day = 2,3936	1MA dividing by 24 h/d 1CA days	
	NOT VALID ✓O	10 conclusion	
	OR	OR	
	$\sqrt[4]{MA} \sqrt[4]{A}$ $2\frac{1}{2} \text{ days} \times 24 \text{ h/d} = 60 \text{ hours}$ $\sqrt[4]{MA}$ Volume of water = 60 hours × 2 350 ℓ/hour $= 141 000 ℓ \sqrt[4]{CA}$	1MA multiplying with 24 h/d 1A number of hours 1MA multiplying hours with flow rate 1CA simplification	M L3
	This is more than the 135 000 ℓ to be topped up		
	The statement is NOT VALID $\checkmark O$	10 conclusion (5)	
3.2.1	$Total = 18 \times 15 = 270 \checkmark MA$	1MA multiplying	Data L3
	Difference = $270 - 236 = 34$	1M subtracting totals	
	$x = 34 \div 2$ \checkmark M	1M dividing by 2	
	$= 17$ \checkmark CA	1CA value of x	
	OR	OR	
	$Mean = \frac{2x + 236}{18} = 15$	1MA adding correct values	
	$2x = 270 - 236$ $\checkmark M$	1M subtracting totals	
	= 34	1M dividing by 2	
	$x = \frac{34}{2} \qquad \checkmark M$		
	$= 17$ \checkmark CA	1CA value of <i>x</i>	
	OR	OR	

Ques	Solution	Explanation	T&L
	$Mean = \frac{2x + 236}{18} = \frac{2x}{18} + 13,1111 \checkmark M$ 15 - 13,1111 = 1,8888 $\frac{2x}{18} = 1,8888 \checkmark CA$	1M adding correct values 1M mean concept 1CA manipulating formula	
	$x = 1,888 \times 18 \div 2$ $= 17 \checkmark CA$	1CA value of <i>x</i> AO (4)	
3.2.2	$Q_{1} = 15 \text{ and } Q_{3} = 20 \sqrt{RG}$ $IQR = 20 - 15 \sqrt{M}$ $= 5 \sqrt{CA}$	$1RG finding Q_1$ $1RG finding Q_3$ $1M subtracting$ $1CA IQR value$ AO (4)	Data L3
3.2.3	$ \begin{array}{c} \sqrt{\sqrt{0}} \\ It is more convenient for them to go in the evening \\ OR \\ OR \\ Small groups receive individual attention \\ OR \\ Any other sensible reason \\ \sqrt{\sqrt{0}} \\ \end{array} $	(4) 20 reason (2)	D L4
3.2.4	$P_{\text{(Day Group full attendance)}} = \frac{6 \checkmark A}{18 \checkmark A} 100\%$ $\approx 33\% \checkmark R$	1A numerator 1A denominator 1R whole % AO (3)	P L2
3.2.5	The range of the afternoon group was smaller. $\checkmark \checkmark O$ The afternoon group has a higher median. $\checkmark \checkmark O$ The afternoon group has smaller inter-quartile range. $\checkmark \checkmark O$ Minimum of the afternoon group is higher. $\checkmark \checkmark O$ (Any TWO acceptable reasons)	20 reason 20 reason	D L4
		(4) [31]	

QUESTION 4 [36 marks]			
Ques	Solution	Explanation	T&L
4.1.1	$\sqrt[4]{MA}$ 0,21875 miles = 385 yards	1MA recognising equal parts	M L2
	Hence, 1 mile = $\frac{385}{0,21875}$ yards \checkmark MA	1MA correct fraction	
	= 1760 yards	OR	
	$\frac{1}{0,21875} = 4,571428571 \checkmark MA$	1MA conversion factor	
	$385 \times 4,571428571 = 1760$ yards	1MA multiplying 385 with conversion factor (2)	
4.1.2	Approximately 4,5 miles $\checkmark \checkmark RG$	2RG correct distance. (2)	MP L2
	(Accept distances in the range 4,3 miles to 4,7 miles)		
4.1.3	$\checkmark RG \qquad \checkmark C \qquad \checkmark CA$ 700 ft = 700 × 0,3038 m = 212,66 m (Accept beights in the range 700 ft to 710 ft)	1RG correct distance 1C converting to m 1CA max height	MP L2
	(necept heights in the range 700 it to 710 it)	(3)	
4.1.4	It is uphill. (steep) $\checkmark \checkmark O$	20 reason	MP L4
	OR		
	This runner found it difficult to run uphill. $\checkmark \checkmark O$		
	It is easier to run downhill. $\checkmark \checkmark O$	(2)	
4.2.1	$\checkmark A \checkmark A \\ 6+3 \text{ or } 9$	2A number of venues	MP L2
	[Due to the annexure of Limpopo full marks can be awarded if only 6 is given as the number of venues]	(2)	
4.2.2	Hippo VVA	2A correct enclosure (2)	MP L2

Ques	Solution	Explanation	T&L
4.2.3	Zoo is 6 times bigger than the elephant exhibit. $\checkmark M \qquad \checkmark CA$ $\therefore 6 \times 4 = 24$ football fields Also accept 5 or 7 as a correct estimation. ANSWER ONLY full marks if 20 to 28 football fields.	2 A estimation 1M multiplying 1CA solution (Max 2 marks for number of football fields for estimated areas of 3,4 ,8 or 9.) (4)	MP L4
4.2.4	The distance on the map = 85 mm $\checkmark A$ Bar scale 20 mm is 200 m $\checkmark M$ Real distance using the bar scale = $\frac{85 \text{ mm}}{20 \text{ mm}} \times 200 \text{ m}$ = $850 \text{ m} \qquad \checkmark CA$ 1,6 km = 1 600 m $\checkmark C$ \therefore The scale is NOT correct. $\checkmark O$ $\checkmark A$ OR Bar scale 20 mm is 200 m $\checkmark M$ 1,6 km = 1 600 m $\checkmark C$ Calculated map distance = $\frac{1600 \text{ m}}{200 \text{ m}} \times 20 \text{ mm}$ = 160 mm $\checkmark CA$ Measured distance = $85 \text{ mm} \qquad \checkmark A$ \therefore The scale is NOT correct. $\checkmark O$ (Accept a range from 82 mm to 87 mm for the distance between streets and 18 mm to 22 mm for the bar scale.)	1A measured distance 1A measured bar 1M relating to bar to measurement 1M using the given scale 1CA simplification 1C conversion 1O conclusion OR 1A measured bar 1M relating to bar to measurement 1C conversion 1M using the given scale 1CA simplification 1A measured distance 1O conclusion (7)	MP L4
4.3.1	Saturday ✓✓A	2A correct day (2)	D L2
4.3.2	Monday is NOT reflected on the given graph. $\checkmark \checkmark O$	20 reasoning (2)	P L4

Ques	Solution	Explanation	T&L
4.3.3	The number of visitors increase to about 12:00. on weekdays and then decrease again till 16:00. $\checkmark \checkmark \odot \bigcirc$ OR	20 trend	D L4
	The number of visitors on weekends is more than the visitors on weekdays. $\checkmark \checkmark O$ OR OR	20 trend	
	The number of visitors increase to about 13:00 on weekends and then decrease again till 16:00. $\checkmark \checkmark O$		
	Any TWO trends relating time and number of visitors.	(4)	
4.3.4	The number indicated by the height of the column on Saturday is a little more than double the height of the mean number for a Tuesday $\sqrt[4]{O}$	20 reason	D L4
	OR		
		20 reason	
	People work during the week $\checkmark \checkmark O$	(4)	
	OR	(+)	
	Saturdays they go with their families to the zoo. $\checkmark \checkmark O$		
	OR		
	Cheaper to go during the weekends $\checkmark \checkmark O$		
	OR		
	More activities at the zoo on Saturday. $\checkmark \checkmark O$		
		[36]	

TOTAL: 150