basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2
NOVEMBER 2016
FINAL MARKING GUIDELINE

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG/RD	Reading from a table/graph/map/diagram
SF	Correct substitution in a formula
O	Opinion/reason/deduction/example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NP	No penalty for rounding
AO	Answer only full marks
J	Justification

This memorandum consists of 19 pages.

QUESTION 1 [36 MARKS]			
Ques	Solution	Explanation	T\&L
1.1.1	$\begin{aligned} \mathrm{P}_{\text {(even number date) }} & =\frac{11}{22} \checkmark \mathrm{~A} \\ & =\frac{1}{2} \text { or } 0,5 \text { or } 50 \% \end{aligned}$	2A numerator 1A denominator $\begin{equation*} \mathrm{AO} \tag{3} \end{equation*}$	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
1.1.2	- Quality of bank services / security / perks. $\quad \checkmark \checkmark$ O OR - Proximity or accessibility of the bank. $\quad \checkmark \checkmark \mathrm{O}$ OR - Marketing/advertising appeal $\quad \checkmark \checkmark \mathrm{O}$ - Loyalty to bank $\begin{gathered}\text { OR } \\ \checkmark \checkmark \mathrm{O}\end{gathered}$ OR - Religious reasons / Economical reasons Any other suitable reason	2 O reason (2)	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
1.1.3	$\begin{aligned} 2014 \text { Fee } & =\mathrm{R} 3,50+1,1 \% \times \mathrm{R} 1000 \quad \checkmark \mathrm{SF} \\ & =\mathrm{R} 14,50 \quad \checkmark \mathrm{CA} \\ \% \text { change } & =\left(\frac{\mathrm{R} 15,50}{\mathrm{R} 14,50}-1\right) \times 100 \% \quad \checkmark \mathrm{SF} \\ & =\left(\frac{\mathrm{R} 1,00}{\mathrm{R} 14,50}\right) \times 100 \% \\ & =6,8965517 \ldots \\ \mathrm{~A} & \approx 6,9 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \% \text { change } & =\left(\frac{\mathrm{R} 15,50}{\mathrm{R} 3,50+0,011 \times \mathrm{R} 1000}-1\right) \times 100 \% \\ & =\left(\frac{\mathrm{R} 15,50}{\mathrm{R} 14,50}-1\right)_{\checkmark} \times 100 \% \\ & =6,8965517 \ldots \quad \checkmark \mathrm{CA} \\ \mathrm{~A} & \approx 6,9 \% \quad \checkmark \mathrm{SA} \end{aligned}$	1SF substituting R1000 1CA 2014 fee 1 SF correct values 1CA simplification 1 R rounding OR 1SF correct values 1SF substituting R1000 1CA 2014 fee 1CA simplification 1 R rounding	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T\&L
	Bank X: Fee per R1 $000=\mathrm{R} 3,95+\mathrm{R} 1,30 \div 100 \times 1000 \quad \checkmark \mathrm{MA}$ $=\text { R16,95 }$ Withdrawal fee for R15 $000=\mathrm{R} 16,95 \times 15$ $=\mathrm{R} 254,25$ For 4 withdrawals : R254,25 $\times 4 \quad \checkmark \mathrm{M}$ $\text { = R1 } 017$ Bank Y: Withdrawal fee for 4 times R15 000 $\begin{aligned} & =\mathrm{R} 15,50 \times 4 \times 15 \\ & =\mathrm{R} 930 \quad \checkmark \mathrm{CA} \end{aligned}$ $\checkmark \mathrm{CA}$ Difference in fees $=$ R1 $017-$ R930 $=$ R87 \checkmark CA It is NOT VALID	1MA substituting 1CA weekly charges 1M fees for 4 withdrawals 1CA charges 1CA October charges 1CA difference 10 conclusion (Max of 6 marks for a total withdrawal of R60 000 .)	
1.1.5		1A 4 weeks wage 1M divide by 5 1 M multiply by 2 1CA total wage OR 1 M divide by 5 1A daily wage 1M multiply by 22 1CA total wage OR 1 M divide by 5 1A number of weeks 1M multiply by weekly wage 1CA total wage OR	$\begin{aligned} & \text { F } \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	T\&L
	$\begin{aligned} \text { Monthly wage } & =\text { R2 142,85× } \times \frac{52}{12} \quad \begin{array}{l} \checkmark \mathrm{A} \\ \checkmark \mathrm{MA} \end{array} \\ & =\mathrm{R} 9285,68 \quad \checkmark \mathrm{CA} \end{aligned}$	1M multiplying 1A 52 weeks in year 1MA dividing by 12 1CA total wage	
1.2.1	- More small/local companies may have entered the market $\checkmark \checkmark$ O - The increased use of smartphones, laptops and tablets - Locally produced no need to import. - Cost of transport increased $\quad \checkmark \checkmark \mathrm{O}$ - Economical reasons / factors $\checkmark \checkmark \mathrm{O}$ - Maritime piracy / security $\quad \checkmark \checkmark \mathrm{O}$ - Other means of transport used $\quad \checkmark \checkmark \mathrm{O}$ - Durability - demand for new computers became less Or any other valid factors with reasons	2 O factor with reason 2 O factor with reason	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$
1.2.2	Q1 of 2012: \checkmark MA $\begin{aligned} & (15,7+11,7+10,1+9+5,4) \text { million } \\ & =51,9 \text { million }{ }^{\vee} \text { CA or } \quad 51900000 \end{aligned}$ Q1 of 2013: $\begin{aligned} & =(12+11,7+9+6,2+4,4) \text { million } \\ & =43,3 \text { million }^{\checkmark \text { MA }} \text { or } 43300000 \end{aligned}$ Difference between 2013 and 2012 $=51,9 \mathrm{mil}-43,3 \mathrm{mil}=8,6 \text { million or } 8600000$ OR	1MA adding correct values 1CA total shipment in 2012 1MA total shipment in 2013 1CA difference in million OR	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T\&L
	Differences (in millions) for $\begin{array}{lr} \mathrm{A}=15,7-12,0=3,7 & \\ \mathrm{~B}=11,7-11,7=0 & \checkmark \mathrm{~A} \\ \mathrm{C}=10,1-9,0=1,1 & \\ \mathrm{D}=9,0-6,2=2,8 & \checkmark \mathrm{~A} \\ \mathrm{E}=5,4-4,4=1 & \end{array}$ $\checkmark \mathrm{M}$ Total difference $=(3,7+1,1+2,8+1)$ million $=8,6 \text { million } \quad \checkmark \mathrm{CA}$	2A differences in millions 1 M adding all differences 1CA total difference in million Penalty if million omitted	
1.2.3	$\begin{aligned} & \% \text { change } \mathrm{A}=\frac{12000000-15700000}{15700000} \times 100 \% \\ &=-23,56687898 \% \\ & \% \text { change } \mathrm{D}=\frac{6200000-9000000}{9000000} \times 100 \% \\ & \begin{aligned} \checkmark \mathrm{RT} \end{aligned} \\ & \\ &=-31,11111111 \% \end{aligned}$ The statement is NOT VALID. $\checkmark \mathrm{O}$ OR Percentage of 2012 shipped in 2013: By A: $\frac{12,{ }^{\vee} \mathrm{RT}}{15,7} \times 100 \%$ $=76,43 \% \quad \checkmark \mathrm{~A}$ \therefore Percentage decrease $=100 \%-76,43 \%=23,57 \% \quad \checkmark \mathrm{M}$ \checkmark RT By D: $\frac{6,2}{9} \times 100 \%$ $=68,89 \% \quad \checkmark \mathrm{~A}$ \therefore Percentage decrease $=100 \%-68,89 \%=31,11 \%$ D shows the greatest decrease, the statement is NOT VALID	1 RT correct values 1 M calculating \% change 1CA \% change 1RT correct values 1M calculating \% change 1CA \% change 10 conclusion OR 1 RT correct values 1A percentage 1M \% change 1RT correct values 1A percentage 1M \% change 10 conclusion NP	$\begin{aligned} & \hline \text { D } \\ & \text { L4 } \end{aligned}$
		[36]	

QUESTION 2 [47 MARKS]			
Ques	Solution	Explanation	T\&L
$\begin{aligned} & \text { 2.1.1 } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & \checkmark \mathrm{A} \\ & \text { Amount } \times 109,7 \%=\mathrm{R} 218,9 \text { billion } \\ & \text { Total amount spent }=\frac{\mathrm{R} 218,9 \text { billion }}{109,7 \%} \quad \checkmark \mathrm{M} \end{aligned} \quad \begin{aligned} &=\mathrm{R} 199544211500 \quad \checkmark \mathrm{CA} \\ & \text { or } \end{aligned}$	1 A correct value and \% 1 M dividing by 109,7\% 1CA total amount NP	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
		(3)	
2.1.1 (b)	\checkmark A It is more appropriate to round to one decimal place. If a rand value in billions is rounded off to a whole number, the amount that is added or lost is hundreds of millions of rands. OR \checkmark A It is not appropriate to round to off to a whole number since it has a big financial implication $\checkmark \checkmark \mathrm{O}$	1A statement 2 O explanation (Note: More appropriate can be implied in the statement)	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L4 } \end{array}$
2.1.2	$\begin{aligned} & \text { International: } 43 \% \text { of R } 218,9 \text { billion }=\mathrm{R} 94,127 \text { billion } \\ & \text { Number of visitors }=14,3 \text { million or } 14300000 \\ & \begin{array}{r} \text { Average spent per visitor } \end{array}=\frac{\mathrm{R} 94127000000}{14300000 \checkmark \mathrm{MA}} \\ & =\mathrm{R} 6582,31 \quad \checkmark \mathrm{CA} \end{aligned}$ This is NOT correct. $\quad \checkmark \mathrm{O}$ OR International: $43 \% \times \mathrm{R} 218,9$ billion $=\mathrm{R} 94,127$ billion $\begin{aligned} \text { Average spent per visitor } & =\frac{\mathrm{R} 94,127 \times 1000 \text { million }}{14,3 \text { million }} \checkmark \text { MA } \\ & =\text { R6 582,31 } \checkmark \mathrm{CA} \end{aligned}$ This is NOT correct. $\quad \checkmark \mathrm{O}$	1A percentage 1 A amount 1C conversion 1MA average 1CA value 10 conclusion OR 1A percentage 1 A amount 1C conversion 1MA average 1CA value 10 conclusion	$\begin{array}{\|l\|} \hline \mathrm{F} \\ \mathrm{~L} 3 \end{array}$

Ques	Solution	Explanation	T\&L
	Amount spent by the International visitors $$ But spent by international tourists is \checkmark A \checkmark A $43 \% \times \mathrm{R} 218,9$ billion $=\mathrm{R} 94,127$ billion The amount was NOT CORRECT $\quad \checkmark \mathrm{O}$	1MA multiplying 1A amount 1C conversion 1A percentage 1A amount 10 conclusion	
2.1.3	Air transport and road transport $\begin{array}{r}\checkmark \mathrm{A}\end{array}$	1A for each item	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
2.1.4		2 O example (2)	$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$
2.1.5	$\begin{aligned} \text { GDP contribution }(2014) & =(\mathrm{R} 3,0044+\mathrm{R} 103,6) \text { billion } \\ & =\mathrm{R} 106,6044 \text { billion } \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \text { Growth in } \begin{aligned} 2015 & =2,9 \% \times \mathrm{R} 106,6044 \text { billion } \\ & =\mathrm{R} 3,0915276 \text { billion } \\ \text { GDP contribution }(2015) & =(\mathrm{R} 3,0915276+\mathrm{R} 106,6044) \text { billion } \\ & =\mathrm{R} 109,6959276 \text { billion } \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ $\text { Growth in } \begin{aligned} 2016 & =2,9 \% \times \mathrm{R} 109,6959276 \text { billion } \\ & =\mathrm{R} 3,1811819 \text { billion } \end{aligned}$ $\begin{aligned} \text { GDP contribution (2016) } & =(\mathrm{R} 3,1811819+\mathrm{R} 109,6959276) \text { bil. } \\ & =\mathrm{R} 112,8771095 \text { billion } \checkmark \mathrm{CA} \\ & =\mathrm{R} 112877 \text { million } \checkmark \mathrm{R} \end{aligned}$ or R112 877000000 or R112,877 billion	1M multiplying 1 M adding 1CA amount in 2014 1CA amount in 2015 1CA amount in 2016 1R correct rounding OR	

Ques	Solution	Explanation	T\&L
2.1.5		1M multiplying 1A 102,9\% 1CA amount in 2014 1CA amount in 2015 1CA amount in 2016 1R correct rounding 1M multiplying 2A 102,9\% CA amount in 2016 1C conversion 1R correct rounding	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$
$2.2 .1$ (a)	$\begin{gathered} \checkmark \checkmark \checkmark \mathrm{RT} \\ \text { Stopover times }=5+20+5+2+8+2+2+2+23+ \\ \checkmark \mathrm{M} \\ 26+3+17+3+14+3+3 \\ \checkmark \mathrm{CA} \\ =138 \text { minutes or } 2 \text { hrs and } 18 \text { minutes } \\ \text { or } 2,3 \text { hours } \end{gathered}$	3RT correct stopover times 1 M adding stopover times 1CA total stopover time Stopover times: One or two errors only 1 mark penalty, Three or four errors 2 mark penalty AO	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
2.2.1 (b)	2 and 3 minutes $\quad \checkmark \checkmark$ CA	CA From Q2.2.1 (a) 2CA modal time (2)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T\&L
$\begin{aligned} & 2.2 .1 \\ & \text { (c) } \end{aligned}$	Actual train travel time: \checkmark RT 13:24 (day2) to 17:30 (day1) - stopover time \checkmark CA $\begin{aligned} & =19 \mathrm{hr} 54 \mathrm{~min}-2 \mathrm{hr} 18 \mathrm{~min} \quad \checkmark \mathrm{M} \\ & =17 \mathrm{hr} 36 \mathrm{~min}=17,6 \mathrm{hr} \quad \checkmark \mathrm{C} \end{aligned}$ $\mathrm{D}=\mathrm{S} \times \mathrm{T}$ $992 \mathrm{~km}=\mathrm{S} \times 17 \mathrm{hr} 36 \mathrm{~min}$	CA From Q2.2.1(a)	$\begin{aligned} & \text { M } \\ & \text { L3 } \end{aligned}$
		1RT start and end time	
		1CA 19 hours 54 min	
		1 M subtracting	
		stopover time 1C conversion	
		1SF substitution	
	$\mathrm{S}=\frac{992 \mathrm{~km}}{17,6 \text { hour }} \quad \checkmark \mathrm{S}$	1S changing subject of formula	
		1CA simplification	
	OR	OR	
	$\text { Total time }=24 \text { hours }-17 \mathrm{~h} 30+13 \mathrm{~h} 24=19 \mathrm{hr} 54 \mathrm{r} \mathrm{CA}$	1RT start and end time 1CA 19 hours 54 min	
	$19 \mathrm{hr} 54 \mathrm{~min}-2 \mathrm{hrs}^{\vee} \mathrm{M}_{8} \mathrm{~min}=17 \mathrm{hrs} 36 \mathrm{~min}=17,6 \mathrm{hr}$	1 M subtracting stopover time	
	$\mathrm{D}=\mathrm{S} \times \mathrm{T}$	1C conversion	
	$992 \mathrm{~km}=\mathrm{S} \times 17,6 \mathrm{hr} \quad \checkmark \mathrm{SF}$	1SF substitution	
	$\mathrm{S}=\frac{992 \mathrm{~km}}{17,6 \text { hour }} \quad \checkmark \mathrm{S}$	1S changing subject of formula	
	$\approx 56 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA}$	1CA simplification	
	OR	OR	
	From 17:30 to $00: 00=6 \mathrm{hrs} 30 \mathrm{~min} \quad \checkmark \mathrm{RT}$	1RT start and end	
	From 00:00 to 13:24 = 13hrs 24 min]	times	
	Time of journey $=19 \mathrm{hrs}$ and 54 minutes CA		
	$\text { Travel time }=19 \mathrm{hr} 54 \mathrm{~min}-2 \mathrm{hr} 18 \mathrm{~min}$	1CA trip time	
	$=17 \mathrm{hr} 36 \mathrm{~min}$	1 M subtracting stopover time	
	$\begin{aligned} & \mathrm{D}=\mathrm{S} \times \mathrm{T} \\ & 992 \mathrm{~km}=\mathrm{S} \times 17,6 \mathrm{hr} \quad \checkmark \mathrm{SF} \\ & \begin{aligned} \text { Average Speed } & =\frac{992 \mathrm{~km}}{17,6 \text { hour }} \checkmark \mathrm{C} \\ & =56,36 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$		
		1SF substitution	
		1S changing subject of formula 1C conversion	
		1CA simplification	
		NP	
		(7)	

Ques	Solution	Explanation	T\&L
2.2.2	Forward trip in January:		$\begin{aligned} & \hline \text { Fin } \\ & \text { L3 } \end{aligned}$
	Parents $=2 \times$ R560 $=$ R1 $120 \checkmark$ MA	1MA two adult price	
	$\begin{aligned} \text { Father } & =\text { R560 }-\mathrm{R} 560 \times 25 \% \\ & =\text { R420 } \quad \checkmark \mathrm{CA} \end{aligned} \text { OR R560 } \times 75 \%$	1MA discounted price for over 55 yrs 1CA father's fare	
	$\begin{aligned} & \text { Children's fare }=\mathrm{R} 560 \times 80 \%=\mathrm{R} 448 \\ & \text { Two children }=2 \times \mathrm{R} 448=\mathrm{R} 896 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA children fare 1CA total children's fare	
	Total fare for family: R1 $120+\mathrm{R} 420+\mathrm{R} 896=\mathrm{R} 2436$	1CA Jan total fares	
	Return trip in February:		
	$\text { Parents fare }=2 \times \mathrm{R} 490=\mathrm{R} 980 \quad \checkmark \mathrm{~A}$	1A adults Feb fare	
	$\text { Father }=\text { R490 minus R490 } \times 25 \% \quad \text { or } \mathrm{R} 490 \times 75 \%$		
	$=\mathrm{R} 367,50 \quad \checkmark \mathrm{~A}$	1A senior citizen fare	
	Two children $=2 \times(\mathrm{R} 490-\mathrm{R} 490 \times 50 \%)$		
	$=\mathrm{R} 490 \quad \checkmark \mathrm{~A}$	1A children Feb fare	
	Total fare for return trip $=\mathrm{R} 980+\mathrm{R} 490+\mathrm{R} 367,50$		
	$=\mathrm{R} 1837,50 \quad \checkmark \mathrm{CA}$	1CA total Feb trip's fare	
	Total cost for both trips $=$ R2 $436+$ R1 837,50	1CA total trip fare (Note: Max of 6 marks	
	$=\mathrm{R} 4273,50 \quad \checkmark \mathrm{CA}$	if only one trip is calculated; Max of 9 marks for using the same fare for both trip)	
	OR	OR	

Ques	Solution	Explanation	T\&L
	$\begin{aligned} \text { Father's fare } & =(\mathrm{R} 560+\mathrm{R} 490) \times 75 \% \\ & =\mathrm{R} 787,50 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Parents' fare } & =2 \times(\mathrm{R} 560+490) \quad \checkmark \mathrm{MA} \\ & =\mathrm{R} 2100 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Children's fare } & =(\mathrm{R} 560 \times 80 \%+\mathrm{R} 490 \times 50 \%) \times 2^{\checkmark \mathrm{MA}} \stackrel{\checkmark \mathrm{MA}}{ } \\ & =\text { R1 } 386^{\checkmark \mathrm{CA}} \end{aligned}$ $\begin{aligned} \text { Total fare for both trips } & =\mathrm{R} 787,50+\mathrm{R} 2100+\mathrm{R} 1386 \\ & =\mathrm{R} 4273,50 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA adding correct values 1MA 75% 1M \% calculation 1CA simplification 1MA adding and multiplying 1CA simplification 1MA 80\% 1MA 50\% 1A correct values 1CA simplification 1CA total return trip fare	
		[47]	

Ques	Solution	Explanation	T\&L
	$\begin{aligned} & \begin{aligned} \text { Capacity }(\text { in litres })= & 765 \mathrm{~m}^{3} \times 1000=765000 \ell \quad \mathrm{C} \\ \text { Capacity (in gallons) }= & \frac{765000}{3,785} \quad \checkmark \mathrm{C} \\ & =202113,6063 \end{aligned} \\ & \text { Volume of water }=94 \% \times 202113,6063^{\checkmark \mathrm{M}} \\ & = \end{aligned}$	1C convert to litres 1 C convert to gal. 1M calculating \% 1CA simplification NP	
3.1.3	In 1 hour 2350 litres of water will flow. In 1 day: 24×2350 litres \checkmark MA $=56400$ litres will flow In $2 \frac{1}{2}$ days amount of water flowing $=2 \frac{1}{2} \times 56400$ litres $=141000 \text { litres } \checkmark \mathrm{CA}$ \therefore Statement is NOT VALID. ${ }^{\checkmark} \mathrm{O}$ OR $\begin{aligned} \text { Time to fill swimming pool } & =\frac{135000 \ell}{2350 \ell / \mathrm{h}} \quad \checkmark \mathrm{MA} \\ & \approx 57,4468 \text { hours } \checkmark \mathrm{CA}\end{aligned}$ $57,4468 \mathrm{hrs}=2$ days and $9 \mathrm{~h} 27 \mathrm{~min} \quad \checkmark \mathrm{M}$ Two and a half days $=2$ days 12 hours $\quad \checkmark \mathrm{C}$ \therefore Statement is NOT VALID $\checkmark \mathrm{O}$ OR $\begin{aligned} \text { Time to fill swimming pool } & =\frac{135000 \ell}{2350 \ell / \mathrm{h}} & \checkmark \mathrm{MA} \\ & \approx 57,4468 \text { hours } & \checkmark \mathrm{CA} \\ & \checkmark \mathrm{MA} & \end{aligned}$ - Two and a half days $=(2 \times 24+12)$ hours $=60$ hours $\checkmark \mathrm{A}$ \therefore Statement is NOT VALID $\checkmark \mathrm{O}$ OR	1MA using flow rate 1CA water in 1 day 1 M multiplying 1CA simplification 10 conclusion OR 1MA finding time taken 1CA time 1 M splitting calc. hrs 1 C converting two and a half days 10 conclusion OR 1MA finding time taken 1CA time 1MA multiply with 24 and add 12 1A hours 10 conclusion OR	

Ques	Solution	Explanation	T\&L
3.1.3	$\begin{aligned} & \text { Time to fill swimming pool }=\frac{135000 \ell}{2350 \ell / \mathrm{h}} \quad \checkmark \mathrm{MA} \\ & \\ & \approx 57,4468 \text { hours } \quad \checkmark \mathrm{CA} \\ & \checkmark \checkmark \mathrm{CA} \end{aligned}$ OR $\underset{2 \frac{1}{2}}{\stackrel{\rightharpoonup}{\text { days }} \times 24 \mathrm{MA} / \mathrm{d}}=60 \stackrel{\vee \mathrm{~A}}{\text { hours }}$ Volume of water $=60$ hours $\times 2350 \ell /$ hour $=141000 \ell \quad \checkmark \mathrm{CA}$ This is more than the 135000ℓ to be topped up The statement is NOT VALID $\checkmark \mathrm{O}$	1MA finding time taken 1CA time 1MA dividing by $24 \mathrm{~h} / \mathrm{d}$ 1CA days 10 conclusion OR 1MA multiplying with 24 h/d 1A number of hours 1MA multiplying hours with flow rate 1CA simplification	$\begin{aligned} & \text { M } \\ & \text { L3 } \end{aligned}$
3.2.1	$\begin{aligned} & \text { Total }=18 \times 15=270 \quad \checkmark \mathrm{MA} \\ & \text { Difference }=270-236=34 \\ & x=34 \div 2 \quad \checkmark \mathrm{M} \\ & =17 \quad \checkmark \mathrm{CA} \end{aligned}$ OR \checkmark MA $\begin{aligned} \text { Mean } & =\frac{2 x+236}{18}=15 \\ 2 x & =270-236 \quad \checkmark \mathrm{M} \\ & =34 \\ x & =\frac{34}{2} \quad \checkmark \mathrm{M} \\ & =17 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA multiplying 1 M subtracting totals 1 M dividing by 2 1CA value of x OR 1MA adding correct values 1 M subtracting totals 1 M dividing by 2 1CA value of x OR	$\begin{aligned} & \hline \text { Data } \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	T\&L
	$\begin{aligned} & \text { Mean }=\frac{2 x+236}{18}=\frac{2 x}{18}+13,1111 \quad \checkmark \mathrm{M} \\ & 15-13,1111=1,8888 \ldots \\ & \frac{2 x}{18}=1,8888 \ldots \quad \checkmark \mathrm{CA} \\ & x=1,888 \ldots \times 18 \div 2 \\ & =17 \quad \checkmark \mathrm{CA} \end{aligned}$	1 M adding correct values 1M mean concept 1CA manipulating formula 1CA value of x AO	
3.2.2	$\begin{aligned} \mathrm{Q}_{1} & =15^{\checkmark \mathrm{RG}} \text { and } \quad \mathrm{Q}_{3}=20 \checkmark \mathrm{RG} \\ \mathrm{IQR} & =20-15 \checkmark \mathrm{M} \\ & =5^{\checkmark \mathrm{CA}} \end{aligned}$	1 RG finding Q_{1} 1 RG finding Q_{3} 1 M subtracting 1 CA IQR value AO	$\begin{aligned} & \text { Data } \\ & \text { L3 } \end{aligned}$
3.2.3	$\checkmark \checkmark \mathrm{O}$ It is more convenient for them to go in the evening OR OR During daytime other distractions keep people away. OR Small groups receive individual attention OR $\checkmark \checkmark$ O Any other sensible reason $\checkmark \checkmark \mathrm{O}$	(4) 2 O reason (2)	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \end{array}$
3.2.4	$\begin{aligned} \mathrm{P}_{\text {(Day Group full attendance) }} & =\frac{6}{18} \stackrel{\mathrm{~A}}{\checkmark} \times \mathrm{A} \\ & \approx 33 \% \vee \checkmark \mathrm{R} \end{aligned}$	1A numerator 1A denominator 1R whole \% AO	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
3.2.5	The range of the afternoon group was smaller. ${ }^{\checkmark} \mathrm{O}$ The afternoon group has a higher median. The afternoon group has smaller inter-quartile range. $\checkmark \checkmark \mathrm{O}$ Minimum of the afternoon group is higher. (Any TWO acceptable reasons)	2 O reason 2 O reason (4)	$\begin{align*} & \hline \text { D } \tag{3}\\ & \text { L4 } \end{align*}$
		[31]	

QUESTION 4 [36 marks]			
Ques	Solution	Explanation	T\&L
4.1.1	$\begin{aligned} & \begin{aligned} & \checkmark \mathrm{MA} \\ & 0,21875 \text { miles }=385 \text { yards } \\ & \text { Hence, } 1 \text { mile }=\frac{385}{0,21875} \text { yards } \quad \checkmark \mathrm{MA} \\ &=1760 \text { yards } \\ & \text { OR } \\ & \frac{1}{0,21875}=4,571428571 \quad \checkmark \mathrm{MA} \\ & \checkmark \mathrm{MA} \\ & 385 \times 4,571428571=1760 \text { yards } \end{aligned} \end{aligned}$	1MA recognising equal parts 1MA correct fraction OR 1MA conversion factor 1MA multiplying 385 with conversion factor	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
4.1.2	Approximately 4,5 miles $\quad \checkmark \checkmark \mathrm{RG}$ (Accept distances in the range 4,3 miles to 4,7 miles)	2RG correct distance. (2)	$\begin{aligned} & \text { MP } \\ & \text { L2 } \end{aligned}$
4.1.3	$\begin{gathered} \checkmark \mathrm{RG} \\ 700 \mathrm{ft}=700 \times 0,3038 \mathrm{C}=212,66 \mathrm{~m} \end{gathered}$ (Accept heights in the range 700 ft to 710 ft)	1RG correct distance 1 C converting to m 1CA max height NP	$\begin{aligned} & \hline \text { MP } \\ & \text { L2 } \end{aligned}$
		(3)	
4.1.4	It is uphill. (steep) $\checkmark \checkmark \mathrm{O}$ OR This runner found it difficult to run uphill. $\checkmark \checkmark \mathrm{O}$ OR It is easier to run downhill. $\quad \checkmark \checkmark \mathrm{O}$	2 O reason	$\begin{aligned} & \hline \text { MP } \\ & \text { L4 } \end{aligned}$
4.2.1	$\begin{aligned} & \checkmark \mathrm{A} \mathrm{~A}^{\checkmark} \text { or } 9 \\ & 6+3 \text { or } \end{aligned}$ [Due to the annexure of Limpopo full marks can be awarded if only 6 is given as the number of venues]	2 A number of venues (2)	$\begin{aligned} & \text { MP } \\ & \text { L2 } \end{aligned}$
4.2.2	Hippo $\checkmark \checkmark$ A	2A correct enclosure	$\begin{aligned} & \hline \text { MP } \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	T\&L
4.2.3	Zoo is 6 times bigger than the elephant exhibit. $\therefore \quad 6 \times 4 \stackrel{\vee \mathrm{M}}{2} \stackrel{\checkmark}{2}$ football fields Also accept 5 or 7 as a correct estimation. ANSWER ONLY full marks if 20 to 28 football fields.	2 A estimation 1M multiplying 1CA solution (Max 2 marks for number of football fields for estimated areas of 3,4 , 8 or 9.)	$\begin{aligned} & \text { MP } \\ & \text { L4 } \end{aligned}$
4.2.4	The distance on the map $=85 \mathrm{~mm}$ Bar scale $20 \begin{array}{r}\text { A } \\ \mathrm{mm}\end{array}$ is $200 \mathrm{~m} \quad \checkmark \mathrm{M}$ Real distance using the bar scale $=\frac{85 \mathrm{~mm}}{20 \mathrm{~mm}} \times \underset{\sim}{\checkmark \mathrm{M}}$ $=850 \mathrm{~m} \quad \checkmark \mathrm{CA}$ $1,6 \mathrm{~km}=1600 \mathrm{~m} \quad \checkmark \mathrm{C}$ \therefore The scale is NOT correct. $\checkmark \mathrm{O}$ $$ (Accept a range from 82 mm to 87 mm for the distance between streets and 18 mm to 22 mm for the bar scale.)	1A measured distance 1A measured bar 1 M relating to bar to measurement 1 M using the given scale 1CA simplification 1C conversion 10 conclusion OR 1A measured bar 1M relating to bar to measurement 1C conversion 1 M using the given scale 1CA simplification 1A measured distance 10 conclusion	$\begin{aligned} & \hline \text { MP } \\ & \text { L4 } \end{aligned}$
4.3.1	Saturday $\quad \checkmark \checkmark$ A	2A correct day	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
4.3.2	Monday is NOT reflected on the given graph. $\quad \checkmark \checkmark \mathrm{O}$	2 O reasoning	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
4.3.3	The number of visitors increase to about 12:00. on weekdays and then decrease again till 16:00. $\checkmark \checkmark \mathrm{O}$ OR The number of visitors on weekends is more than the visitors on weekdays. $\quad \checkmark \checkmark \mathrm{O}$ OR The number of visitors increase to about 13:00 on weekends and then decrease again till 16:00. $\quad \checkmark \checkmark \mathrm{O}$ Any TWO trends relating time and number of visitors.	2 O trend 2 O trend (4)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$
4.3.4	The number indicated by the height of the column on Saturday is a little more than double the height of the mean number for a Tuesday $\checkmark \checkmark \mathrm{O}$ OR People work during the week $\quad \checkmark \checkmark \mathrm{O}$ OR Saturdays they go with their families to the zoo. OR Cheaper to go during the weekends $\checkmark \checkmark \mathrm{O}$ OR More activities at the zoo on Saturday. $\quad \checkmark \checkmark \mathrm{O}$	2 O reason 2 O reason	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$
		[36]	

